-
Foss Breen heeft een update geplaatst 6 dagen, 4 uren geleden
A silver nanoparticle obtained by reducing salts with solid dispersion of curcumin (130 nm, 0.081 mg mL
) was used to counteract against the toxic – edematogenic, myotoxic, and neurotoxic – effects of
venom.
The edematogenic effect was evaluated by plasma extravasation in rat dorsal skin after injection of 50 µg per site of venom alone or preincubated with 1, 10, and 100 µL of AgNPs; the myotoxicity was evaluated by measuring the creatine kinase released into the organ-bath before the treatment and at the end of each experiment; and neurotoxicity was evaluated in chick biventer cervicis using the conventional myographic technique, face to the exogenous acetylcholine (ACh) and potassium chloride (KCl) added into the bath before the treatment and after each experiment. Preliminarily, a concentration-response curve of AgNPs was carried out to select the concentration to be used for neutralizing assays, which consists of neutralizing the venom-induced neuromuscular paralysis and edema by preincubating AgNextrinsic nicotinic receptors.
AgNPs interact with constituents of P. olfersii venom responsible for the edema-forming activity and neuromuscular blockade, but not on the sarcolemma membrane-acting constituents. The protective effect of the studied AgNPs on avian preparation points out to molecular targets as intrinsic and extrinsic nicotinic receptors.
Nanomaterials for antimicrobial applications have gained interest in recent years due to the increasing bacteria resistance to conventional antibiotics. check details Wound sterilization, water treatment and surface decontamination all avail from multifunctional materials that also possess excellent antibacterial properties, eg zinc oxide (ZnO). Here, we assess and compare the effects of synthesized hedgehog-like ZnO structures and commercial ZnO particles with and without mixing on the inactivation of bacteria on surfaces and in liquid environments.
Gram-positive (
) and Gram-negative (
) bacteria in microbial culture medium were added to reverse spin bioreactors that contained different concentrations of each ZnO type to enable dynamic mixing of the bacteria-ZnO suspensions. Optical density of the bacteria-ZnO suspensions was measured in real-time and the number of viable bacteria after 24 h exposure was determined using standard microbiological techniques. The concentration of zinc ion generated from ZnO dissolutitween bacteria and ZnO, where mixing greatly enhances antibacterial efficacy of all ZnO particles. The efficacy is modulated also by ZnO particle shapes, where hedgehog ZnO has superior effect, in particular at lower concentrations. However, at too low concentrations, ZnO can stimulate bacteria growth and must be thus used with caution.
The inhibition effects are thus mainly controlled by the interaction dynamics between bacteria and ZnO, where mixing greatly enhances antibacterial efficacy of all ZnO particles. The efficacy is modulated also by ZnO particle shapes, where hedgehog ZnO has superior effect, in particular at lower concentrations. However, at too low concentrations, ZnO can stimulate bacteria growth and must be thus used with caution.
Chronic obstructive pulmonary disease (COPD) is often combined with type 2 diabetes mellitus (T2DM) in clinical, and with poor prognosis. In recent years, research shows that inflammation is a common characteristic of COPD and T2DM. T-helper 17 cell (Th17)/regulatory T-cell (Treg) balance controls inflammation and may be important in the pathogenesis of COPD combined with T2DM patients. This study investigated the characteristics of Th17, Treg and related inflammatory factors in COPD combined with T2DM patients and the potential mechanism.
Application of flow cytometry technology, real-time fluorescent quantitative PCR and ELISA to detect the changes in peripheral blood of Th17 and Treg number and the expression of key transcription factors and related cytokines in COPD combined T2DM patients were performed.
Patients with COPD combined with T2DM revealed significant increase in peripheral Th17, Th17 related cytokines (IL-17A, IL-17F, IL-21, IL-23, IL-6) and transcription factor (RORγt) levels and significant decrease in Treg, Treg-related cytokines (IL-10, TGFβ1) and transcription factor (Foxp3) as compared with patients with COPD, T2DM and healthy controls.
Th17/Treg functional imbalance exists in patients with COPD combined with T2DM, indicating a potential role of Th17/Treg imbalance in the formation and progression of COPD combined with T2DM.
Th17/Treg functional imbalance exists in patients with COPD combined with T2DM, indicating a potential role of Th17/Treg imbalance in the formation and progression of COPD combined with T2DM.
Lipid mediators, particularly eicosanoids, are associated with airway inflammation, especially with the eosinophilic influx. This study aimed to measure lipid mediators and cells in induced sputum, that could possibly reflect the inflammatory process in the bronchial tree of COPD subjects.
Eighty patients diagnosed with COPD and 37 healthy controls participated in the study. Induced sputum samples were ascertained for differential cell count and induced sputum supernatant concentrations of selected eicosanoids by the means of gas chromatography/mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry.
Increased sputum eosinophilia was associated with higher concentrations of selected proinflammatory eicosanoids. In COPD subjects prostaglandin D
and 11-dehydro-thromboxane B
correlated negatively with airway obstruction measured by FEV
and FEV
/FVC values. COPD subjects with disease exacerbations during past 12 months had significantly higher concentrations of prostaglandin D
, 12-oxo-eicosatetraenoic acid and 5-oxo-eicosatetraenoic acid.
Stable COPD is often associated with eosinophil influx in the lower airways and elevated concentrations of eicosanoids that is reflected by some disease characteristics.
Stable COPD is often associated with eosinophil influx in the lower airways and elevated concentrations of eicosanoids that is reflected by some disease characteristics.