Activiteit

  • Clifford Hede heeft een update geplaatst 1 week, 4 dagen geleden

    This study proposes an experimental method to trace the historical evolution of media discourse as a means to investigate the construction of collective meaning. Based on distributional semantics theory (Harris, 1954; Firth, 1957) and critical discourse theory (Wodak and Fairclough, 1997), it explores the value of merging two techniques widely employed to investigate language and meaning in two separate fields neural word embeddings (computational linguistics) and the discourse-historical approach (DHA; Reisigl and Wodak, 2001) (applied linguistics). As a use case, we investigate the historical changes in the semantic space of public discourse of migration in the United Kingdom, and we use the Times Digital Archive (TDA) from 1900 to 2000 as dataset. For the computational part, we use the publicly available TDA word2vec models (Kenter et al., 2015; Martinez-Ortiz et al., 2016); these models have been trained according to sliding time windows with the specific intention to map conceptual change. We then use DHA to triangulate the results generated by the word vector models with social and historical data to identify plausible explanations for the changes in the public debate. By bringing the focus of the analysis to the level of discourse, with this method, we aim to go beyond mapping different senses expressed by single words and to add the currently missing sociohistorical and sociolinguistic depth to the computational results. The study rests on the foundation that social changes will be reflected in changes in public discourse (Couldry, 2008). Although correlation does not prove direct causation, we argue that historical events, language, and meaning should be considered as a mutually reinforcing cycle in which the language used to describe events shapes explicit meanings, which in turn trigger other events, which again will be reflected in the public discourse.The emergence of new technologies and players, along with a favorable regulatory framework (PSD2 Directive), is changing the banking industry. FinTechs and TechFins have allowed the introduction of new services and changed the way customers interact to satisfy their financial needs. The FinTech landscape is constantly evolving in the market. Different business value propositions are entering the financial services industry, moving from increasing the user’s experience to developing a time to market framework for banks to innovate products, processes, and channels, increasing the cost efficiency and looking for a “partnering on order” to lighten the regulatory burdens for banks. The many businesses of banks are changing their value chains, and banks’ business models should do the same accordingly. Strategists could no longer take their value chains as a given; choices have to be made on what needs to be protected and maintained, what abandoned and the new on coming to make banks evolve and become more resilient in doing their job. Banking is shifting significantly from a pipeline, vertical paradigm, to open banking business models where open innovation, modularity, and ecosystem-based bank’s business model may become the ongoing mainstream and paradigm to follow and develop. https://www.selleckchem.com/products/darapladib-sb-480848.html Opportunities and threats for banks are many and new ones to re-gaining their role in the market throughout a re-intermediation process.In this article we describe our experiences with computational text analysis involving rich social and cultural concepts. We hope to achieve three primary goals. First, we aim to shed light on thorny issues not always at the forefront of discussions about computational text analysis methods. Second, we hope to provide a set of key questions that can guide work in this area. Our guidance is based on our own experiences and is therefore inherently imperfect. Still, given our diversity of disciplinary backgrounds and research practices, we hope to capture a range of ideas and identify commonalities that resonate for many. This leads to our final goal to help promote interdisciplinary collaborations. Interdisciplinary insights and partnerships are essential for realizing the full potential of any computational text analysis involving social and cultural concepts, and the more we bridge these divides, the more fruitful we believe our work will be.The use of AI and machine learning in sports is increasingly prevalent, including their use for in-game strategy and tactics. This paper reports on the use of machine learning techniques, applying it to analysis of U.S. Division I-A College Football overtime games. The present overtime rules for tie games in Division I-A college football was adopted in 1996. Previous research (Rosen and Wilson, 2007) found little to suggest that the predominantly used strategy of going on defense first was advantageous. Over the past decade, even with significant transformation of new offensive and defensive strategies, college football coaches still opt for the same conventional wisdom strategy. In revisiting this analysis of overtime games using both logistic regression and inductive learning/decision tree analysis, the study validates there remains no advantage to the defense first strategy in overtime. The study found evidence that point spread (as an indicator of team strength) and red zone offense performance of both teams were useful to predict game results. Additionally, by altering the decision-making “frame,” specific scenarios are illustrated where a coach can use these machine learning discovered relationships to influence end-of-regulation game decisions that may increase their likelihood of winning whether in regulation time or in overtime.Automated financial advising (robo-advising) has become an established practice in wealth management, yet very few studies have looked at the cross-section of the robo-advisors and the factors explaining the persistent variability in their portfolio allocation recommendations. Using a sample of 53 advising platforms from the US and Germany, we show that the underlying algorithms manage to identify different risk profiles, although substantial variability is evident even within the same investor types’ groups. The robo-advisor expertise in a particular asset class seems to play a significant role, as does the geographical location, while the breadth of the offered investment choice (number of portfolios) across the robo-advisors under study does not seem to have an effect.

Deel via Whatsapp