-
Yu Mohammad heeft een update geplaatst 4 dagen, 11 uren geleden
Light is the most important environmental factor affecting many aspects of plant development. In this study, we report that B-box protein 11 (BBX11) acts as a positive regulator of red light signaling. BBX11 loss-of-function mutant seedlings display significantly elongated hypocotyls under conditions of both red light and long day, whereas BBX11 overexpression causes markedly shortened hypocotyls under various light states. BBX11 binds to the HY5 promoter to activate its transcription, while both BBX21 and HY5 associate with the promoter of BBX11 to positively regulate its expression. Taken together, our results reveal positive feedback regulation of photomorphogenesis consisting of BBX11, BBX21, and HY5, thus substantiating a transcriptional regulatory mechanism in the response of plants to light during normal development.Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. TAPI-1 cell line As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis.The nucleotide-binding domain and leucine-rich repeat (NLR) gene family is highly expanded in the plant lineage with extensive sequence and structure polymorphisms. To survey the landscape of NLR expansion, we mined the published long-read data generated by the resistance gene enrichment sequencing of 64 diverse Arabidopsis thaliana accessions. We found that the hot spots of massive multi-gene NLR cluster expansion did not typically span the whole cluster; instead, they were restricted to a handful of, or only one, dominant radiation(s). All sequences in such a radiation were distinct from other genes in the cluster but not from each other in the clade, making it difficult to assign trustworthy reference-based orthologies when multiple reference genes were present in the radiation. Consequently, NLR genes can be broadly divided into two types radiating or high-fidelity, where high-fidelity genes are well conserved and well separated from other clades. A similar distinction could be made for NLR clusters, depending on whether cluster size was determined primarily by extensive radiation or the presence of numerous high-fidelity genes. We also identified groups of well-conserved NLR clades that were missing from the Columbia-0 reference genome. This suggests that the classification of NLRs using gene IDs from a single reference accession can rarely capture all major paralogs in a cluster accurately and representatively and that a reference-agnostic perspective is required to properly characterize these additional variations. Finally, we present a quantitative visualization method for differentiating these situations in a given clade of interest.Plants have developed various mechanisms for avoiding pathogen invasion, including resistance (R) genes. Most R genes encode nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs). Here, we report the isolation of three new bacterial blight R genes in rice, Xa1-2, Xa14, and Xa31(t), which were allelic to Xa1 and encoded atypical NLRs with unique central tandem repeats (CTRs). We also found that Xa31(t) was the same gene as Xa1-2. Although Xa1-2 and Xa14 conferred different resistance spectra, their performance could be attenuated by iTALEs, as has previously been reported for Xa1. XA1, XA1-2, XA14, and non-resistant RGAF differed mainly in the substructure of the leucine-rich repeat domain. They all contained unique CTRs and belonged to the CTR-NLRs, which existed only in Gramineae. We also found that interactions among these genes led to differing resistance performance. In conclusion, our results uncover a unique locus in rice consisting of at least three multiple alleles (Xa1, Xa1-2, and Xa14) that encode CTR-NLRs and confer resistance to Xanthomonas oryzae pv. oryzae (Xoo).Xanthomonas oryzae pathovar oryzae (Xoo) uses transcription activator-like effectors (TALEs) to cause bacterial blight (BB) in rice. In turn, rice has evolved several mechanisms to resist BB by targeting TALEs. One mechanism involves the nucleotide-binding leucine-rich repeat (NLR) resistance gene Xa1 and TALEs. Reciprocally, Xoo has evolved TALE variants, C-terminally truncated versions (interfering TALEs or iTALEs), to overcome Xa1 resistance. However, it remains unknown to what extent the two co-adaptive mechanisms mediate Xoo-rice interactions. In this study, we cloned and characterized five additional Xa1 allelic R genes, Xa2, Xa31(t), Xa14, CGS-Xo1 11 , and Xa45(t) from a collection of rice accessions. Sequence analysis revealed that Xa2 and Xa31(t) from different rice cultivars are identical. These genes and their predicted proteins were found to be highly conserved, forming a group of Xa1 alleles. The XA1 alleles could be distinguished by the number of C-terminal tandem repeats consisting of 93 amino acid residues and ranged from four in XA14 to seven in XA45(t). Xa1 allelic genes were identified in the 3000 rice genomes surveyed. On the other hand, iTALEs could suppress the resistance mediated by Xa1 allelic R genes, and iTALE genes were prevalent (∼95%) in Asian, but not in African Xoo strains. Our findings demonstrate the prominence of a defense mechanism in which rice depends on Xa1 alleles and a counteracting mechanism in which Xoo relies on iTALEs for BB.