-
Lewis Aagesen heeft een update geplaatst 16 uren, 12 minuten geleden
In this paper, we analyze the construction of identification codes. Identification codes are based on the question “Is the message I have just received the one I am interested in?”, as opposed to Shannon’s transmission, where the receiver is interested in not only one, but any, message. The advantage of identification is that it allows rates growing double exponentially in the blocklength at the cost of not being able to decode every message, which might be beneficial in certain applications. We focus on a special identification code construction based on two concatenated Reed-Solomon codes and have a closer look at its implementation, analyzing the trade-offs of identification with respect to transmission and the trade-offs introduced by the computational cost of identification codes.Nano-size machines are moving from only being topics of basic research to becoming elements in the toolbox of engineers, and thus the issue of optimally controlling their work cycles becomes important. Here, we investigate hydrogen atom-like systems as working fluids in thermodynamic engines and their optimal control in minimizing entropy or excess heat production in finite-time processes. The electronic properties of the hydrogen atom-like system are controlled by a parameter κ reflecting changes in, e.g., the effective dielectric constant of the medium where the system is embedded. Several thermodynamic cycles consisting of combinations of iso-κ, isothermal, and adiabatic branches are studied, and a possible a-thermal cycle is discussed. Solving the optimal control problem, we show that the minimal thermodynamic length criterion of optimality for finite-time processes also applies to these cycles for general statistical mechanical systems that can be controlled by a parameter κ, and we derive an appropriate metric in probability distribution space. We show how the general formulas we have obtained for the thermodynamic length are simplified for the case of the hydrogen atom-like system, and compute the optimal distribution of process times for a two-state approximation of the hydrogen atom-like system.Based on the theory of finite-time thermodynamics (FTT), the effects of three design parameters, that is, inlet temperature, inlet pressure, and inlet total mole flow rate, of a tubular plug-flow sulfuric acid decomposition reactor on the total entropy generation rate (EGR) and SO2 yield are analyzed firstly. One can find that when the three design parameters are taken as optimization variables, the minimum total EGR and the maximum SO2 yield of the reference reactor restrict each other, i.e., the two different performance objectives cannot achieve the corresponding extremum values at the same time. Then, the second-generation non-dominated solution sequencing genetic algorithm (NSGA-II) is further used to pursue the minimum total EGR and the maximum SO2 yield of the reference reactor by taking the three parameters as optimization design variables. After the multi-objective optimization, the reference reactor can be Pareto improved, and the total EGR can be reduced by 9% and the SO2 yield can be increased by 14% compared to those of the reference reactor. The obtained results could provide certain theoretical guidance for the optimal design of actual sulfuric acid decomposition reactors.In this study, we use entropy-based measures to identify different types of trading behaviors. We detect the return-driven trading using the conditional block entropy that dynamically reflects the “self-causality” of market return flows. Then we use the transfer entropy to identify the news-driven trading activity that is revealed by the information flows from news sentiment to market returns. We argue that when certain trading behavior becomes dominant or jointly dominant, the market will form a specific regime, namely return-, news- or mixed regime. Based on 11 years of news and market data, we find that the evolution of financial market regimes in terms of adaptive trading activities over the 2008 liquidity and euro-zone debt crises can be explicitly explained by the information flows. The proposed method can be expanded to make “causal” inferences on other types of economic phenomena.In this article, I use an operational formulation of the Choi-Jamiołkowski isomorphism to explore an approach to quantum mechanics in which the state is not the fundamental object. I first situate this project in the context of generalized probabilistic theories and argue that this framework may be understood as a means of drawing conclusions about the intratheoretic causal structure of quantum mechanics which are independent of any specific ontological picture. I then give an operational formulation of the Choi-Jamiołkowski isomorphism and show that, in an operational theory which exhibits this isomorphism, several features of the theory which are usually regarded as properties of the quantum state can be derived from constraints on non-local correlations. This demonstrates that there is no need to postulate states to be the bearers of these properties, since they can be understood as consequences of a fundamental equivalence between multipartite and temporal correlations.High capacity long haul communication and cost-effective solutions for low loss transmission are the major advantages of optical fibers, which makes them a promising solution to be used for backhaul network transportation. A distortion-tolerant 100 Gbps framework that consists of long haul and high capacity transport based wavelength division multiplexed (WDM) system is investigated in this paper, with an analysis on different design parameters to mitigate the amplified spontaneous emission (ASE) noise and nonlinear effects due to the fiber transmission. check details The performance degradation in the presence of non-linear effects is evaluated and a digital signal processing (DSP) assisted receiver is proposed in order to achieve bit error rate (BER) of 1.56 × 10-6 and quality factor (Q-factor) of 5, using 25 and 50 GHz channel spacing with 90 μm2 effective area of the optical fiber. Analytical calculations of the proposed WDM system are presented and the simulation results verify the effectiveness of the proposed approach in order to mitigate non-linear effects for up to 300 km length of optical fiber transmission.