-
Turan Suhr heeft een update geplaatst 5 dagen, 11 uren geleden
17-0.87). More research to provide robust evidence concerning validity, reliability, usability and engagement for the use of newer technologies is needed for future diet and physical activity bone research.Additive manufacturing processes induce a high orientation in the microstructure of the printed part due to the strong thermal gradients developed during the process caused by the highly concentrated heat source that is used to melt the metal powder layer-by-layer. The resulting microstructural anisotropy may have an effect on the post-processing operations such as machining ones. This paper investigates the influence of the anisotropy in turning operations carried out on laser powder bed fused Ti6Al4V parts manufactured with different scanning strategies. The machinability under both transverse and cylindrical turning operations was assessed in terms of surface integrity, considering both surface and sub-surface aspects. The effect of the different cooling conditions, that is flood and cryogenic ones, was studied as well. The outcomes showed that the microstructural anisotropy had a remarkable effect on the machining operations and that the cryogenic cooling enhanced the effect of the anisotropy in determining the surface integrity.Extracellular vesicles (EVs) are nanometric membranous structures secreted from almost every cell and present in biofluids. Because EV composition reflects the state of its parental tissue, EVs possess an enormous diagnostic/prognostic potential to reveal pathophysiological conditions. However, a prerequisite for such usage of EVs is their detailed characterisation, including visualisation which is mainly achieved by atomic force microscopy (AFM) and electron microscopy (EM). Here we summarise the EV preparation protocols for AFM and EM bringing out the main challenges in the imaging of EVs, both in their natural environment as biofluid constituents and in a saline solution after EV isolation. In addition, we discuss approaches for EV imaging and identify the potential benefits and disadvantages when different AFM and EM methods are applied, including numerous factors that influence the morphological characterisation, standardisation, or formation of artefacts. We also demonstrate the effects of some of these factors by using cerebrospinal fluid as an example of human biofluid with a simpler composition. selleck inhibitor Here presented comparison of approaches to EV imaging should help to estimate the current state in morphology research of EVs from human biofluids and to identify the most efficient pathways towards the standardisation of sample preparation and microscopy modes.An industrially manufactured recycled polyol, obtained by acidolysis process, was for the first time proved to be a possible replacement of the reference fossil-based polyol in a low-density formulation suitable for industrial production of flexible polyurethane foams. The influence of increasing recycled polyol amounts on the properties of the polyurethane foam has been studied, also performing foam emission tests to evaluate the environmental impact. Using 10 pbw recycled polyol in the standard formulation, significant differences of the physical properties were not observed, but increase of the recycled polyol amount to 30 pbw led to a dramatic decrease of the foam air flow and a very tight foam. To overcome this drawback, N,N’-bis[3-(dimethylamino)propyl]urea was selected as tertiary amine catalyst, enabling the preservation of foam properties even at high recycled polyol level (30 pbw). Foam emission data demonstrated that this optimized foam formulation also led to an important reduction of volatile organic compounds. The results open the way for further optimization studies in low-density flexible polyurethane foam formulations, to increase the reutilization of the polyurethane waste and reduce the amount of petroleum-based raw materials.Chemical composition and herbicidal, antifungal, antibacterial and molluscicidal activities of essential oils from Choukzerk, Eryngium triquetrum, and Alexander, Smyrnium olusatrum, from western Algeria were characterized. Capillary GC-FID and GC/MS were used to investigate chemical composition of both essential oils, and the antifungal, antibacterial, molluscicidal and herbicidal activities were determined by % inhibition. Collective essential oil of E. triquetrum was dominated by falcarinol (74.8%) and octane (5.6%). The collective essential oil of S. olusatrum was dominated by furanoeremophilone (31.5%), furanodiene+curzurene (19.3%) and (E)-β-caryophyllene (11%). The E. triquetrum oil was tested and a pure falcarinol (99%) showed virtuous herbicidal and antibacterial activities against potato blackleg disease, Pectobacterium atrosepticum, and Gram-negative soil bacterium, Pseudomonas cichorii (85 and 100% inhibition, respectively), and high ecotoxic activity against brine shrimp, Artemia salina, and the freshwater snail, Biomphalaria glabrata, with an IC50 of 0.35 µg/mL and 0.61 µg/mL, respectively. Essential oil of S. olusatrum showed interesting antibacterial and ecotoxic activity and good herbicidal activity against watercress seeds, Lepidium sativum (74% inhibition of photosynthesis, 80% mortality on growth test on model watercress), while the furanoeremophilone isolated from the oil (99% pure) showed moderate herbicidal activity. Both oils showed excellent antifungal activity against Fusarium. Both oils and especially falcarinol demonstrated good potential as new biocontrol agents in organic crop protection.Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.