-
Malik Vilhelmsen heeft een update geplaatst 1 week, 1 dag geleden
The results of orthogonal partial least squares-discriminant analysis based on these parameters show that the subjects can be classified into their groups with 100% accuracy. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Brillouin spectroscopy can suffer from low signal-to-noise ratios (SNRs). Such low SNRs can render common data analysis protocols unreliable, especially for SNRs below ∼10. In this work we exploit two denoising algorithms, namely maximum entropy reconstruction (MER) and wavelet analysis (WA), to improve the accuracy and precision in determination of Brillouin shifts and linewidth. Algorithm performance is quantified using Monte-Carlo simulations and benchmarked against the Cramér-Rao lower bound. Superior estimation results are demonstrated even at low SNRs (≥ 1). Denoising is furthermore applied to experimental Brillouin spectra of distilled water at room temperature, allowing the speed of sound in water to be extracted. Experimental and theoretical values were found to be consistent to within ±1% at unity SNR. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.We propose and study a reconstruction method for photoacoustic tomography (PAT) based on total generalized variation (TGV) regularization for the inversion of the slice-wise 2D-Radon transform in 3D. The latter problem occurs for recently-developed PAT imaging techniques with parallelized integrating ultrasound detection where projection data from various directions is sequentially acquired. As the imaging speed is presently limited to 20 seconds per 3D image, the reconstruction of temporally-resolved 3D sequences of, e.g., one heartbeat or breathing cycle, is very challenging and currently, the presence of motion artifacts in the reconstructions obstructs the applicability for biomedical research. In order to push these techniques forward towards real time, it thus becomes necessary to reconstruct from less measured data such as few-projection data and consequently, to employ sophisticated reconstruction methods in order to avoid typical artifacts. The proposed TGV-regularized Radon inversion is a variational method that is shown to be capable of such artifact-free inversion. It is validated by numerical simulations, compared to filtered back projection (FBP), and performance-tested on real data from phantom as well as in-vivo mouse experiments. The results indicate that a speed-up factor of four is possible without compromising reconstruction quality. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Terahertz technology has been widely used as a nondestructive and effective detection method. Herein, terahertz time-domain spectroscopy was used to detect drug-induced liver injury in mice. Firstly, the boxplots were used to detect abnormal data. Then the maximal information coefficient method was used to search for the features strongly correlated with the degree of injury. After that, the liver injury model was built using the random forests method in machine learning. The results show that this method can effectively identify the degree of liver injury and thus provide an auxiliary diagnostic method for detecting minor liver injury. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Methyglyoxal (MGO) is an important pathological factor for diabetic cardiovascular complications. Conventional methods for MGO detection in biological samples, such as high performance liquid chromatography (HPLC)-UV spectrometry, LC-fluorescence spectrometry, and HPLC-mass spectrometry, are time-consuming, high-cost, and complicated. Here, we present a method for MGO quantitative detection based on far-IR spectral analyses. Our method uses o-phenylenediamine (OPD) to produce a chemical reaction with MGO, which results in multiple fingerprint feature changes associated with the molar ratio of MGO and OPD. We use the linear relationship between MGO concentration and peak intensity of the reaction product to quantitatively determine MGO concentration. The corresponding linear detectable range is 5∼2500 nmol/mL nmol per mL with a correlation coefficient of 0.999. selleck kinase inhibitor This quantitative method is also tested by blood samples with adjusted MGO concentrations, and shows 95% accuracy with only 30s testing time. Our method provides a fast, simple and economical approach to determining MGO concentration in blood. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells’ position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.