-
Peck McMahon heeft een update geplaatst 1 week, 3 dagen geleden
Group A rotaviruses (RVA) represent the most common cause of pediatric gastroenteritis in children less then 5 years, worldwide. There has been an increase in global detection and reported cases of acute gastroenteritis caused by RVA genotype G12 strains, particularly in Africa. This study sought to characterize the genomic relationship between African G12 strains and determine the possible origin of these strains. Whole genome sequencing of 34 RVA G12P[6] and G12P[8] strains detected from the continent including southern (South Africa, Zambia, Zimbabwe), eastern (Ethiopia, Uganda), central (Cameroon), and western (Togo) African regions, were sequenced using the Ion Torrent PGM method. The majority of the strains possessed a Wa-like backbone with consensus genotype constellation of G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while a single strain from Ethiopia displayed a DS-1-like genetic constellation of G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. In addition, three Ethiopian and one South African strains exhibitedrtment events and provide insights into the evolutionary dynamics of G12 strains spreading across selected sub-Saharan Africa regions.Sugarcane is a major crop in tropical and subtropical regions of the world. In China, the application of large amounts of nitrogen (N) fertilizer to boost sugarcane yield is commonplace, but it causes substantial environmental damages, particularly soil, and water pollution. Certain rhizosphere microbes are known to be beneficial for sugarcane production, but much of the sugarcane rhizosphere microflora remains unknown. We have isolated several sugarcane rhizosphere bacteria, and 27 of them were examined for N-fixation, plant growth promotion, and antifungal activity. 16S rRNA gene sequencing was used to identify these strains. Among the isolates, several strains were found to have a relatively high activity of nitrogenase and ACC deaminase, the enzyme that reduces ethylene production in plants. These strains were found to possess nifH and acdS genes associated with N-fixation and ethylene production, respectively. Two of these strains, Pantoea dispersa-AA7 and Enterobacter asburiae-BY4 showed maximum plant g sugarcane growth promotion by N-fixing rhizobacteria P. dispersa and E. asburiae strains. Both strains could be used as biofertilizer for sugarcane to minimize nitrogen fertilizer use and better disease management.Bacillus spp. MBI 600 is a gram-positive bacterium and is characterized as a PGPR strain involved in plant growth promotion and control of various plant pathogens which has recently been introduced into the agricultural practice. In this study we performed a Next Generation Sequencing analysis, to analyze the full genome of this microorganism and to characterize it taxonomically. Results showed that MBI 600 strain was phylogenetically close to other Bacillus spp. strains used as biocontrol agents and identified as B. subtilis. GOG analysis showed clusters contributed to secondary metabolites production such as fengycin and surfactin. In addition, various genes which annotated according to other plant-associated strains, showed that play a main role in nutrient availability from soil. The root colonization ability of MBI 600 strain was analyzed in vivo with a yellow fluorescence protein (yfp) tag. Confocal laser scanning microscopy of cucumber roots treated with yfp-tagged MBI 600 cells, revealed that the strain exhibits a strong colonization ability of cucumber roots, although it is affected significantly by the growth substrate of the roots. In vitro and in planta experiments with MBI 600 strain and F. oxysporum f.sp. selleck kinase inhibitor radicis cucumerinum and P. aphanidernatum, showed a high control ability against these soilborne pathogens. Overall, our study demonstrates the effectiveness of MBI 600 in plant growth promotion and antagonism against different pathogens, highlighting the use of this microorganism as a biocontrol agent.Members of the Bacillus cereus group are spore-forming organisms commonly associated with food poisoning and intestinal infections. Moreover, some strains of the group (i.e., B. cereus sensu stricto and Bacillus thuringiensis) can cause bacteremia in humans, mainly in immunocompromised individuals. Here we performed the genetic characterization of 17 human clinical strains belonging to B. cereus group isolated from blood culture. The whole-genome sequencing (WGS) revealed that the isolates were closely related to B. cereus sensu stricto and B. thuringiensis-type strain. Multilocus sequence typing analysis performed on the draft genome revealed the genetic diversity of our isolates, which were assigned to different sequence types. Based on panC nucleotide sequence, the isolates were grouped in the phylogenetic groups III and IV. The NHE, cer, and inhA gene cluster, entA, entFM, plcA, and plcB, were the most commonly detected virulence genes. Although we did not assess the ability to generate biofilm by phenotypic tests, we verified the prevalence of biofilm associated genes using an in silico approach. A high prevalence of pur gene cluster, xerC, clpY, codY, tasA, sipW, sinI, and sigB genes, was found. Genes related to the resistance to penicillin, trimethoprim, and ceftriaxone were identified in most of the isolates. Intriguingly, the majority of these virulence and AMR genes appeared to be evenly distributed among B. cereus s.s. isolates, as well as closely related to B. thuringiensis isolates. We showed the WGS represents a good approach to rapidly characterize B. cereus group strains, being able to give useful information about genetic epidemiology, the presence of virulence and antimicrobial genes, and finally about the potential hazard related to this underestimated risk.Pathogenic bacterial biofilms play an important role in recurrent nosocomial and medical device-related infections. Once occurred, the complex structure of the biofilm promotes the development of antibiotic resistance and becomes extremely difficult to eradicate. Here we describe a novel and effective anti-biofilm compound maipomycin A (MaiA), which was isolated from the metabolites of a rare actinomycete strain Kibdelosporangium phytohabitans XY-R10. Its structure was deduced from analyses of spectral data and confirmed by single-crystal X-ray crystallography. This natural product demonstrated a broad spectrum of anti-biofilm activities against Gram-negative bacteria. Interestingly, the addition of Fe(II) or Fe(III) ions could block the biofilm inhibition activity of MaiA because it is an iron chelator. However, not all iron chelators showed biofilm inhibition activity, suggesting that MaiA prevents biofilm formation through a specific yet currently undefined pathway. Furthermore, MaiA acts as a synergist to enhance colistin efficacy against Acinetobacter baumannii.