-
Perkins Keller heeft een update geplaatst 6 dagen, 1 uur geleden
Attention-deficit / hyperactivity disorder (ADHD) and Bipolar Disorder (BD) are common mental disorders with a high degree of comorbidity. However, no systematic review with meta-analysis has aimed to quantify the degree of comorbidity between both disorders. Selleckchem Mitapivat To this end we performed a systematic search of the literature in October 2020. In a meta-analysis of 71 studies with 646,766 participants from 18 countries, it was found that about one in thirteen adults with ADHD was also diagnosed with BD (7.95 %; 95 % CI 5.31-11.06), and nearly one in six adults with BD had ADHD (17.11 %; 95 % CI 13.05-21.59 %). Substantial heterogeneity of comorbidity rates was present, highlighting the importance of contextual factors Heterogeneity could partially be explained by diagnostic system, sample size and geographical location. Age of BD onset occurred earlier in patients with comorbid ADHD (3.96 years; 95 % CI 2.65-5.26, p less then 0.001). Cultural and methodological differences deserve attention for evaluating diagnostic criteria and clinicians should be aware of the high comorbidity rates to prevent misdiagnosis and provide optimal care for both disorders.The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a major target for the discovery of direct antiviral agents. We previously reported the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay (Gurard-Levin et al., 2020). The assay was further improved by adding the rhinovirus HRV3C protease to the same well as the SARS-CoV-2 3CLpro enzyme. High substrate specificity for each enzyme allowed the proteases to be combined in a single assay reaction without interfering with their individual activities. This novel duplex assay was used to profile a diverse set of reference protease inhibitors. The protease inhibitors were grouped into three categories based on their relative potency against 3CLpro and HRV3C including those that are equipotent against 3CLpro and HRV3C (GC376 and calpain inhibitor II), selective for 3CLpro (PF-00835231, calpain inhibitor XII, boceprevir), and selective for HRV3C (rupintrivir). Structural analysis showed that the combination of minimal interactions, conformational flexibility, and limited bulk allows GC376 and calpain inhibitor II to potently inhibit both enzymes. In contrast, bulkier compounds interacting more tightly with pockets P2, P3, and P4 due to optimization for a specific target display a more selective inhibition profile. Consistently, the most selective viral protease inhibitors were relatively weak inhibitors of human cathepsin L. Taken together, these results can guide the design of cysteine protease inhibitors that are either virus-specific or retain a broad antiviral spectrum against coronaviruses and rhinoviruses.The nearly 3 orders of magnitude variation in size observed among double-stranded DNA viruses (dsDNA) has important ecological consequences, but the factors responsible for this variation remain poorly understood. Here we first evaluate if a relationship exists between the genome size of diverse dsDNA viruses and their hosts in single-celled organisms (prokaryotes and eukaryotes). We find that dsDNA genome size increases systematically, though less than proportionally, with host genome size. We next evaluate possible relationships between virus size, host size and burst size in an analysis that includes both single-celled and multicellular hosts where genome size and cell volume are not as highly correlated. Here we find that virus volume increases sublinearly with host cell volume (but not genome size) across species, and that virus burst volume (burst size * virus volume) increases with host cell volume. These findings suggest that the size and number of dsDNA viruses produced by a particular host may be constrained by the volume of the infected host cell. This may be useful for better understanding virus-host population dynamics, and ultimately, a better understanding of which viruses may infect which hosts (i.e., host specificity) and the likelihood of cross-species transmission events (i.e., host jumping).
Intensity inhomogeneity is one of the common artifacts in image processing. This artifact makes image segmentation more challenging and adversely affects the performance of intensity-based image processing algorithms.
In this paper, a novel region-based level set method is proposed for segmenting the images with intensity inhomogeneity with applications to brain tumor segmentation in magnetic resonance imaging (MRI) scans. For this purpose, the inhomogeneous regions are first modeled as Gaussian distributions with different means and variances, and then transferred into a new domain, where preserves the Gaussian intensity distribution of each region but with better separation. Moreover, our method can perform bias field correction. To this end, the bias field is represented by a linear combination of smooth base functions that enables better intensity inhomogeneity modeling. Therefore, level set fundamental formulation and bias field are modified in the proposed approach.
To assess the performance of thour proposed method is robust to noise and intensity non-uniformity and outperforms other state-of-the-art segmentation methods in terms of bias field correction, noise resistance, and segmentation accuracy.
Experimental results show that the proposed model is capable of accurate segmentation and bias field estimation simultaneously. The proposed model suppresses the side effect of the over-smoothing object boundary. Moreover, our model has good accuracy in the segmentation of images with extreme intensity non-uniformity.
Experimental results show that the proposed model is capable of accurate segmentation and bias field estimation simultaneously. The proposed model suppresses the side effect of the over-smoothing object boundary. Moreover, our model has good accuracy in the segmentation of images with extreme intensity non-uniformity.Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.