Activiteit

  • Ashworth Vargas heeft een update geplaatst 1 week geleden

    from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity – e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% – while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver classification results comparable to that of MagicBlast. Overall, the experiments confirm the effectiveness of our method and its high accuracy even in negative control samples.

    Protein phosphorylation networks play an important role in cell signaling. In these networks, phosphorylation of a protein kinase usually leads to its activation, which in turn will phosphorylate its downstream target proteins. A phosphorylation network is essentially a causal network, which can be learned by causal inference algorithms. Prior efforts have applied such algorithms to data measuring protein phosphorylation levels, assuming that the phosphorylation levels represent protein activity states. Selleck GSK2578215A However, the phosphorylation status of a kinase does not always reflect its activity state, because interventions such as inhibitors or mutations can directly affect its activity state without changing its phosphorylation status. Thus, when cellular systems are subjected to extensive perturbations, the statistical relationships between phosphorylation states of proteins may be disrupted, making it difficult to reconstruct the true protein phosphorylation network. Here, we describe a novel framework to addresof the protein activity states by our novel framework significantly enhances causal discovery of protein phosphorylation networks.

    Explicit representation of the protein activity states by our novel framework significantly enhances causal discovery of protein phosphorylation networks.

    Positron Emission Tomography (PET) is increasingly utilized in radiomics studies for treatment evaluation purposes. Nevertheless, lesion volume identification in PET images is a critical and still challenging step in the process of radiomics, due to the low spatial resolution and high noise level of PET images. Currently, the biological target volume (BTV) is manually contoured by nuclear physicians, with a time expensive and operator-dependent procedure. This study aims to obtain BTVs from cerebral metastases in patients who underwent L-[

    C]methionine (11C-MET) PET, using a fully automatic procedure and to use these BTVs to extract radiomics features to stratify between patients who respond to treatment or not. For these purposes, 31 brain metastases, for predictive evaluation, and 25 ones, for follow-up evaluation after treatment, were delineated using the proposed method. Successively, 11C-MET PET studies and related volumetric segmentations were used to extract 108 features to investigate the potentialoposed system is able i) to extract 108 features for each automatically segmented lesion and ii) to select a sub-panel of 11C-MET PET features (3 and 8 in the case of predictive and follow-up evaluation), with valuable association with patient outcome. We believe that our model can be useful to improve treatment response and prognosis evaluation, potentially allowing the personalization of cancer treatment plans.

    The proposed system is able i) to extract 108 features for each automatically segmented lesion and ii) to select a sub-panel of 11C-MET PET features (3 and 8 in the case of predictive and follow-up evaluation), with valuable association with patient outcome. We believe that our model can be useful to improve treatment response and prognosis evaluation, potentially allowing the personalization of cancer treatment plans.

    A Virtual Screening algorithm has to adapt to the different stages of this process. Early screening needs to ensure that all bioactive compounds are ranked in the first positions despite of the number of false positives, while a second screening round is aimed at increasing the prediction accuracy.

    A novel CNN architecture is presented to this aim, which predicts bioactivity of candidate compounds on CDK1 using a combination of molecular fingerprints as their vector representation, and has been trained suitably to achieve good results as regards both enrichment factor and accuracy in different screening modes (98.55% accuracy in active-only selection, and 98.88% in high precision discrimination).

    The proposed architecture outperforms state-of-the-art ML approaches, and some interesting insights on molecular fingerprints are devised.

    The proposed architecture outperforms state-of-the-art ML approaches, and some interesting insights on molecular fingerprints are devised.

    In [Prezza et al., AMB 2019], a new reference-free and alignment-free framework for the detection of SNPs was suggested and tested. The framework, based on the Burrows-Wheeler Transform (BWT), significantly improves sensitivity and precision of previous de Bruijn graphs based tools by overcoming several of their limitations, namely (i) the need to establish a fixed value, usually small, for the order k, (ii) the loss of important information such as k-mer coverage and adjacency of k-mers within the same read, and (iii) bad performance in repeated regions longer than k bases. The preliminary tool, however, was able to identify only SNPs and it was too slow and memory consuming due to the use of additional heavy data structures (namely, the Suffix and LCP arrays), besides the BWT.

    In this paper, we introduce a new algorithm and the corresponding tool ebwt2InDel that (i) extend the framework of [Prezza et al., AMB 2019] to detect also INDELs, and (ii) implements recent algorithmic findings that allow to perffind up to 83% of the SNPs and 72% of the existing INDELs. These percentages considerably improve the 71% of SNPs and 51% of INDELs found by the state-of-the art tool based on de Bruijn graphs. We furthermore report results on larger (real) Human whole-genome sequencing experiments. Also in these cases, our tool exhibits a much higher sensitivity than the state-of-the art tool.

Deel via Whatsapp