-
Klit Huang heeft een update geplaatst 1 week geleden
CONCLUSIONS The mitochondrial DNA variant m.3243A>G can manifest phenotypically with a non-syndromic, multisystem phenotype with wide intra-familial heterogeneity. Rare manifestations of the m.3243A>G variant are gestosis and short PQ syndrome. The broad intra-familial phenotypic heterogeneity may be related to fluctuating heteroplasmy rates or mitochondrial DNA copy numbers and may lead to misdiagnosis for years.Nonlinear optical and thermo-optical properties of two pure ionic liquids, BMIOMe.NTf2 and BMIOMe.N(CN)2, were examined in this study. This was the first nonlinear refractive index determination of a pristine ionic liquid by a standard self-refraction experiment. The nonlinear optical characterisations were performed using Z-scan and EZ-scan techniques in the thermally managed approach, with a mode-locked femtosecond laser source. Thermal properties were analysed concomitantly, and the thermo-optical coefficient, thermal characteristic time, and lens strength were characterised. These results define the parameters to be adopted in the method of nanoparticles formation by laser ablation in an ionic liquid solution and indicate that BMIOMe.NTf2 is a prominent material to be engineered for photonics applications.
The prevalence of acrophobia is high, especially with the rise of many high-rise buildings. In the recent few years, researchers have begun to analyse acrophobia from the neuroscience perspective, especially to improve the virtual reality exposure therapy (VRET). Electroencephalographic (EEG) is an informative neuroimaging technique, but it is rarely used for acrophobia. The purpose of this study is to evaluate the effectiveness of using EEGs to identify the degree of acrophobia objectively.
EEG data were collected by virtual reality (VR) exposure experiments. We classified all subjects’ degrees of acrophobia into three categories, where their questionnaire scores and behavior data showed significant differences. Using synchronization likelihood, we computed the functional connectivity between each pair of channels and then obtained complex networks named functional brain networks (FBNs). Sulfosuccinimidyloleatesodium Basic topological features and community structure features were extracted from the FBNs. Statistical results demonstr of acrophobia. The proposed CNN framework can provide objective feedback, which could help build closed-loop VRET portable systems.Diffraction and imaging using x-rays and neutrons are widely utilized in different fields of engineering, biology, chemistry and/or materials science. The additional information gained from the diffraction signal by x-ray diffraction and computed tomography (XRD-CT) can give this method a distinct advantage in materials science applications compared to classical tomography. Its active development over the last decade revealed structural details in a non-destructive way with unprecedented sensitivity. In the current contribution an attempt to adopt the well-established XRD-CT technique for neutron diffraction computed tomography (ND-CT) is reported. A specially designed ‘phantom’, an object displaying adaptable contrast sufficient for both XRD-CT and ND-CT, was used for method validation. The feasibility of ND-CT is demonstrated, and it is also shown that the ND-CT technique is capable to provide a non-destructive view into the interior of the ‘phantom’ delivering structural information consistent with a reference XRD-CT experiment.The local structure of La(Fe1-xMnx)AsO has been investigated using temperature dependent Fe K-edge extended x-ray absorption fine structure (EXAFS) measurements. The EXAFS data reveal distinct behavior of Fe-As and Fe-Fe atomic displacements with a clear boundary between x≦0.02 and x>0.02. The Fe-As bondlength shows a gradual thermal expansion while the Fe-Fe bond manifests a temperature dependent anomaly at ∼180 K for x>0.02. It is interesting to find characteristically different nature of Fe-As and Fe-Fe bondlengths shown by the temperature dependent mean square relative displacements. Indeed, the Fe-As bond, stiffer than that of the Fe-Fe, gets softer for x$\le$0.02 and hardly shows any change for x>0.02. On the other hand, Fe-Fe bond tends to be stiffer for x≦0.02 followed by a substantial softening for x>0.02. Such a distinction has been seen also in the As K-edge x-ray absorption near edge structure (XANES), probing local geometry around As atom together with the valence electronic structure. The results suggest that local atomic displacements by Mn substitution inducing increased iron local magnetic moment that should be the main reason for its dramatic effect in iron-based superconductors.Germanene, though with Dirac valleys, is not deemed as a good valleytronic material due to its minute band gap, negligible spin-orbit coupling and spatial inversion symmetry. In comparison of interfacing germanene with MoS2, we proposed that forming heterostructure with Tl2S, an anti-MoS2 material with two outer heavy metal layers, could be more effective in raising spin-orbit coupling and band gap in germanene due to the direct Ge-metal contact. By carrying out first-principles calculations, we studied the valleytronic properties of germanene enhanced by monolayer Tl2S. It is found that the Ge-Tl direct interaction is strong to a proper extent so that the valleys of germanene still persist and simultaneously the valley gap is drastically increased from 23 to 370 meV. The valley spin splitting, being zero in pristine germanene, become 45 meV, which is opposite at inequivalent valleys owing to the time reversal symmetry. The inversion symmetry of germanene is broken by Tl2S, resulting in large Berry curvature near the valleys and hence laying the ground for Berry phase physics in germanene, e.g., valley spin Hall effect and valley-spin locking, as revealed in our study. The calculations found a perfect valley-selective circular dichroism, by which the valley and spin degrees of freedom can be manipulated selectively and correlatively.A comparative study has been carried out on the magnetocaloric properties of as-cast and annealed Tb2Ni0.90Si2.94 intermetallic compound. While the as-cast material exhibits ferromagnetic cluster-glass behaviour below 9.9 K coexisting with antiferromagnetic (AFM) interaction, the annealed system shows AFM ordering below 13.5 K and spin freezing occurs below 4 K. The compound exhibits moderate magnetocaloric performance with maximum isothermal entropy changes (-ΔS M) 8.8 and 10.9 J kg-1 K-1, relative cooling power (RCP) 306 and 365 J kg-1, along with adiabatic temperature change (ΔT ad) 5.5 and 8.15 K for 70 kOe magnetic field change in as-cast and annealed forms, respectively. The estimated magnetic entropy change is found to be larger for annealed sample in comparison to that of as-cast analogue. However, the full width at half maxima (FWHM) of -ΔS M(T) behaviour is larger in as-cast compound due to the presence of inherent structural disorder which reduces with thermal annealing. A positive isothermal entropy change (-ΔS M) and adiabatic temperature change (ΔT ad) is observed for the as-cast compound in the measured field and temperature region.