-
McKee Key heeft een update geplaatst 1 week, 1 dag geleden
The long-term time trends of atmospheric pollutants at eight Arctic monitoring stations are reported. The work was conducted under the Arctic Monitoring and Assessment Programme (AMAP) of the Arctic Council. The monitoring stations were Alert, Canada; Zeppelin, Svalbard; Stórhöfði, Iceland; Pallas, Finland; Andøya, Norway; Villum Research Station, Greenland; Tiksi and Amderma, Russia. Persistent organic pollutants (POPs) such as α- and γ-hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), α-endosulfan, chlordane, dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) showed declining trends in air at all stations. However, hexachlorobenzene (HCB), one of the initial twelve POPs listed in the Stockholm Convention in 2004, showed either increasing or non-changing trends at the stations. Many POPs demonstrated seasonality but the patterns were not consistent among the chemicals and stations. Some chemicals showed winter minimum and summer maximum concentrations at one station but not another, and vice versa. The ratios of chlordane isomers and DDT species showed that they were aged residues. Time trends of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were showing decreasing concentrations at Alert, Zeppelin and Andøya. The Chemicals of Emerging Arctic Concern (CEAC) were either showing stable or increasing trends. These include methoxychlor, perfluorohexane sulfonic acid (PFHxS), 62 fluorotelomer alcohol, and C9-C11 perfluorocarboxylic acids (PFCAs). We have demonstrated the importance of monitoring CEAC before they are being regulated because model calculations to predict their transport mechanisms and fate cannot be made due to the lack of emission inventories. We should maintain long-term monitoring programmes with consistent data quality in order to evaluate the effectiveness of chemical control efforts taken by countries worldwide.Leather wastewater contains various toxic contaminants, with trivalent chromium (Cr(III)) having high concentration and adversely affecting wastewater treatment. In this study, a Cr(III) adsorption protein (MerP) was displayed on the cell surface of Escherichia coli and then coupled with a magnetic pellet system to facilitate Cr(III) adsorption. The results showed the engineered strain M-BL21 achieved an in vitro Cr(III) adsorption capacity of 2.38 mmol/g. Next, the magnetic pellets were prepared as component ratios of sodium alginate (2.5%), polyvinyl alcohol (8%), Fe3O4 nanoparticles (3.5%), and M-BL21 at 3 g/L. The optimized system was capable of Cr(III) adsorption at an efficiency of 91.29%, which was substantially higher than that of the magnetic carrier alone (67%). Results of scanning electron microscopy with energy-dispersive X-ray analysis proved that Cr(III) was absorbed on the magnetic pellet. The recyclable performance of magnetic property (13.34185 emu/g) and high Cr(III) adsorption efficiency (68.75%) remained after five cycles of Cr(III) absorption. In the medium-scale experiment, 25 L of leather wastewater were treated with magnetic pellet and the Cr(III) removal efficiency reached 88.2%. Thus, our results present an advanced, fully operational, and eco-friendly method for in situ removal of Cr(III) from contaminated wastewater.Synthetic polymers, commonly referred to as plastics, are anthropogenic contaminants that adversely affect the natural ecosystems. The continuous disposal of long lifespan plastics has resulted in the accumulation of plastic waste, leading to significant pollution of both marine and terrestrial habitats. Scientific pursuit to seek environment-friendly materials from renewable resources has focused on cellulose, the primary reinforcement component of the cell wall of plants, as it is the most abundantly available biopolymer on earth. This paper provides an overview on the current state of science on nanocellulose research; highlighting its extraction procedures from lignocellulosic biomass. Literature shows that the process used to obtain nanocellulose from lignocellulosic biomass greatly influences its morphology, properties and surface chemistry. The efficacy of chemical methods that use alkali, acid, bleaching agents, ionic liquids, deep eutectic solvent for pre-treatment of biomass is discussed. There has anomaterials. The demand for cellulose is expected to increase further due to its increasing and broadening applications.The Steller sea lion (SSL) population west of 144°W longitude experienced a significant population decline. While there appears to be a stable or increasing population trend in rookeries in the Gulf of Alaska (GOA) and Southeast Alaska (SEA), some rookeries within the Aleutian Islands (AI) have failed to recover. Previous studies found regional differences in whole blood total mercury concentrations ([THg]) showing more than 20% of AI pups had [THg] above critical thresholds for increased risk of immunological effects and other adverse outcomes. Measurements of immune cell-signaling proteins can be used to evaluate the immune status of marine mammals in relation to [THg]. We compared serum cytokine and chemokine concentrations in pups among regions (AI, eastern GOA, SEA), and examined associations among cytokines, chemokines, white blood cell (WBC) counts, and [THg]. Considering liver is an important target organ for mercury and immune protein synthesis we additionally examined the relationship of [THg] with her wildlife.Faucet aerators have been linked to multiple opportunistic pathogen outbreaks in hospital, especially Pseudomonas aeruginosa, their complex structure promoting biofilm development. The importance of bacteria aerosolization by faucet aerators and their incidence on the risk of infection remain to be established. In this study, ten different types of aerators varying in complexity, flow rates and type of flow were evaluated in a controlled experimental setup to determine the production of aerosols and the level of contamination. The aerosol particle number density and size distribution were assessed using a particle spectrometer. The bacterial load was quantified with a 14-stage cascade impactor, where aerosol particles were captured and separated by size, then analysed by culture and flow cytometry. The water was seeded with Pseudomonas fluorescens as a bacterial indicator. Aerosol particle size and mean mass distribution varied depending on the aerator model. find more Devices without aeration or with laminar flow produced the lowest number and mass of aerosol particles when measured with spectrometry.