-
Velling Dyhr heeft een update geplaatst 1 week, 3 dagen geleden
The outbreak of COVID-19 affected the lives of all sections of society as people were asked to self-quarantine in their homes to prevent the spread of the virus. Poly-D-lysine The lockdown had serious implications on mental health, resulting in psychological problems including frustration, stress, and depression. In order to explore the impacts of this pandemic on the lives of students, we conducted a survey of a total of 1182 individuals of different age groups from various educational institutes in Delhi – National Capital Region (NCR), India. The article identified the following as the impact of COVID-19 on the students of different age groups time spent on online classes and self-study, medium used for learning, sleeping habits, daily fitness routine, and the subsequent effects on weight, social life, and mental health. Moreover, our research found that in order to deal with stress and anxiety, participants adopted different coping mechanisms and also sought help from their near ones. Further, the research examined the student’s engagement on social media platforms among different age categories. This study suggests that public authorities should take all the necessary measures to enhance the learning experience by mitigating the negative impacts caused due to the COVID-19 outbreak.Use of mineral fertilizers is essential to enhance crop productivity in smallholder farming systems of Sub-Saharan Africa, but various studies have reported ‘non-responsiveness’ where application of inorganic fertilizers does not lead to satisfactory yield gains. This phenomenon is not well defined nor are its extent and causes well understood. In order to close these knowledge gaps, we assessed the effects of commonly recommended nitrogen (N), phosphorus (P) and/or potassium (K) fertilizer inputs on maize grain and soybean production on farmer fields across prevalent land slope and/or soil texture gradients (2 × 2 matrix) in four agroecosystems over two growing seasons. The extent of the problem in the two cropping systems was compared by decomposing frequency distributions into various ranges of fertilizer effect sizes that represent specific degrees of non-responsiveness and responsiveness. Key soil properties and rainfall variables for field trials were also determined to identify the factors that are limost strongly influenced by the evenness in rainfall during growing seasons, and the soil silt content, extractable P, and ratio of total C and total N. Findings from our study emphasize that non-responsiveness by maize and soybean crops in African smallholder agroecosystems is dependent on multiple interacting factors, and requires careful scrutiny to ensure returns on investments.Ripretinib is a recently developed drug for the treatment of adults with advanced gastrointestinal stromal tumors. This paper reports an attempt to study this molecule by electronic modeling and molecular mechanics to determine its composition and other specific chemical features via the density-functional theory (DFT), thereby affording sufficient information on the electronic properties and descriptors that can enable the estimation of its molecular bioactivity. We explored most of the physico-chemical properties of the molecule, as well as its stabilization, via the studies of the natural bond orbitals and noncovalent interactions. The electronic excitation, which is a time-dependent process, was examined by the time-dependent DFT with a CAM-B3LYP functional. The molecular docking study indicated that Ripretinib strongly docks with three known novel severe acute respiratory syndrome coronavirus 2 (SARS-n-CoV-2) proteins with a reasonably good docking score.Around the world, the antibiotic azithromycin (AZM) is currently being used to treat the coronavirus disease (COVID-19) in conjunction with hydroxychloroquine or chloroquine. Investigating the chemical and physical properties of compounds used alone or in combination to combat the COVID-19 pandemic is of vital and pressing importance. The purpose of this study was to characterize the charge transfer (CT) complexation of AZM with iodine in four different solvents CH2Cl2, CHCl3, CCl4, and C6H5Cl. AZM reacted with iodine at a 11 M ratio (AZM to I2) in the CHCl3 solvent and a 12 M ratio in the other three solvents, as evidenced by data obtained from an elemental analysis of the solid CT products and spectrophotometric titration and Job’s continuous variation method for the soluble CT products. Data obtained from UV-visible and Raman spectroscopies indicated that AZM strongly interacted with iodine in the CH2Cl2, CCl4, and C6H5Cl solvents by a physically potent n→σ* interaction to produce a tri-iodide complex formulated as [AZM·I+]I3-. XRD and TEM analyses revealed that, in all solvents, the AZM-I2 complex possessed an amorphous structure composed of spherical particles ranging from 80 to 110 nm that tended to aggregate into clusters. The findings described in the present study will hopefully contribute to optimizing the treatment protocols for COVID-19.This paper studies the impact of sanitary protocols aimed at reducing the contagion by Covid-19 during the production and consumption of goods and services. We augment a heterogeneous SIR model with a two-way feedback between contagion and economic activity, allowing for firm and sector heterogeneity. While protocols are a burden for firms (especially SMEs), they may enhance economic activity by avoiding infections that reduce the labor supply. Using Chilean data, we calibrate the model and assess the impact of recommended firm protocols on contagion and economic activity in the after-lockdown period. Our quantitative results suggest that (i) A second wave of infections is likely in the absence of protocols; (ii) Protocols targeted at some sectors can reduce deaths while at the same time improving economic conditions; (iii) Protocols applied widely have a negative effect on the economy. We also find that applying strict protocols to a few sectors is generally preferable to applying milder protocols to a larger number of sectors, both in terms of health and economic benefits.Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply.