Activiteit

  • Sherman Magnusson heeft een update geplaatst 2 dagen, 20 uren geleden

    Results The compounds were more effective against the resistant gastric cell lines, being the CS effect more significant in EPG85-257RDB cells. Taking together the IC50 values and the CS effect, compounds 8, 15, and 16 exhibited the best results. Epoxyboetirane P (8), with the strongest MDR-selective antiproliferative activity against gastric carcinoma EPG85-257RDB cells (IC50 of 0.72 µM), being 10-fold more active against this resistant subline than in sensitive gastric carcinoma cells. The CS effect elicited by compounds 15 and 16 appeared to be by inducing apoptosis via caspase-3 activation. Structure-activity relationships of the compounds were additionally obtained through regression models to clarify the structural determinants associated to the CS effect. Conclusions This study reinforces the importance of lathyrane-type diterpenes as lead molecules for the research of MDR-modifying agents.Background Vascular leakage is a common complication of hemorrhagic shock. Endothelial glycocalyx plays a crucial role in the protection of vascular endothelial barrier function. Hydroxyethyl starch (HES) is a commonly used resuscitation fluid for hemorrhagic shock. YC-1 concentration However, whether the protective effect of HES on vascular permeability after hemorrhagic shock is associated with the endothelial glycocalyx is unclear. Methods Using hemorrhagic shock rat model and hypoxia treated vascular endothelial cells (VECs), effects of HES (130/0.4) on pulmonary vascular permeability and the relationship to endothelial glycocalyx were observed. Results Pulmonary vascular permeability was significantly increased after hemorrhagic shock, as evidenced by the increased permeability of pulmonary vessels to albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and Evans blue, the decreased transendothelial electrical resistance of VECs and the increased transmittance of FITC-BSA. The structure of the endothelial glycocalyx washemorrgic shock.The mechanism is mainly related to the protective effect of HES on endothelial glycocalyx and intercellular junction proteins. The protective effect of HES on endothelial glycocalyx was associated with the down-regulated expression of heparinase, hyaluronidase, and neuraminidase. HES (130/0.4) had an anti-apoptotic effect in hemorrhagic shock.Depression is a multigenetic or multifactorial syndrome. The central neuron system (CNS)-orientated, single target, and conventional antidepressants are insufficient and far from ideal. Traditional Chinese Medicine (TCM) has historically been used to treat depression up till today, particularly in Asia. Its holistic, multidrug, multitarget nature fits well with the therapeutic idea of systems medicine in depression treatment. Over the past two decades, although efforts have been made to understand TCM herbal antidepressants at the molecular level, many fundamental questions regarding their mechanisms of action remain to be addressed at the systems level in order to better understand the complicated herbal formulations in depression treatment. In this Mini Review, we review and discuss the mechanisms of action of herbal antidepressants and their acting targets in the pathological systems in the brain, such as monoamine neurotransmissions, hypothalamic-pituitary-adrenal (HPA) axis, neurotropic factor brain-derived neurotrophic factor (BDNF) cascade, and glutamate transmission. Some herbal molecules, constituents, and formulas are highlighted as examples to discuss their mechanisms of action and future directions for comprehensive researches at the systems level. Furthermore, we discuss pharmacological approaches to integrate the mechanism of action from the molecular level into the systems level for understanding of systems pharmacology of TCM formulations. Integration of the studies at the molecular level into the systems level not only represents a trend in TCM study but also promotes our understanding of the system-wide mechanism of action of herbal antidepressant formulations.Sepsis commonly leads to acute and long-term cognitive and affective impairments which are associated with increased mortality in patients. Neuroinflammation characterized by excessive cytokine release and immune cell activation underlies the behavioral changes associated with sepsis. We previously reported that the administration of a traditional Chinese herbal Qiang Xin 1 (QX1) formula improves survival in septic mice. This study was performed to better understand the effects and the mechanisms of QX1 formula treatment on behavioral changes in a preclinical septic model induced by cecal ligation and puncture. Oral administration of QX1 formula significantly improved survival, alleviated overall cognitive impairment and emotional dysfunction as assessed by the Morris water maze, novel object recognition testing, elevated plus maze and open field testing in septic mice. QX1 formula administration dramatically inhibited short and long-term excessive pro-inflammatory cytokine production both peripherally and centrally, and was accompanied by diminished microglial activation in septic mice. Biological processes including synaptic transmission, microglia cell activation, cytokine production, microglia cell polarization, as well as inflammatory responses related to signaling pathways including the MAPK signaling pathway and the NF-κB signaling pathway were altered prominently by QX1 formula treatment in the hippocampus of septic mice. In addition, QX1 formula administration decreased the expression of the M1 phenotype microglia gene markers such as Cd32, Socs3, and Cd68, while up-regulated M2 phenotype marker genes including Myc, Arg-1, and Cd206 as revealed by microarray analysis and Real-time PCR. In conclusion, QX1 formula administration attenuates cognitive deficits, emotional dysfunction, and reduces neuroinflammatory responses to improve survival in septic mice. Diminished microglial activation and altered microglial polarization are involved in the neuroprotective mechanism of QX1 formula.Gynecologic cancers are among the most lethal cancers found in women, and, advanced stage cancers are still a treatment challenge. Ion channels are known to contribute to cellular homeostasis in all cells and mounting evidence indicates that ion channels could be considered potential therapeutic targets against cancer. Nevertheless, the pharmacologic effect of targeting ion channels in cancer is still understudied. We found that the expression of Kir6.2/SUR2 potassium channel is a potential favorable prognostic factor in gynecologic cancers. Also, pharmacological stimulation of the Kir6.2/SUR2 channel activity with the selective activator molecule minoxidil arrests tumor growth in a xenograft model of ovarian cancer. Investigation on the mechanism linking the Kir6.2/SUR2 to tumor growth revealed that minoxidil alters the metabolic and oxidative state of cancer cells by producing mitochondrial disruption and extensive DNA damage. Consequently, application of minoxidil results in activation of a caspase-3 independent cell death pathway.

Deel via Whatsapp