Activiteit

  • Geisler Bagger heeft een update geplaatst 2 maanden, 2 weken geleden

    The CORA scores of the patients’ joint angle to the normal data increased by 11.6~37.8% with the assistance of the exoskeleton. The wave frequency of proprioceptive feedback stimulation that can be directly correlated to the neural rehabilitation obviously inclined during a gait cycle. The muscle activations were also rearranged to better support the patient’s walk when using the exoskeleton, while the metabolic costs were reduced for all the patients.

    In summary, the present simulation-based method can be practical for pre-evaluation and optimization of various exoskeleton design in the future.

    In summary, the present simulation-based method can be practical for pre-evaluation and optimization of various exoskeleton design in the future.A simple mastoidectomy is used to remove inflammation of the mastoid cavity and to create a route to the skull base and middle ear. However, due to the complexity and difficulty of the simple mastoidectomy, implementing robot vision for assisted surgery is a challenge. To overcome this issue using a convolutional neural network architecture in a surgical environment, each surgical instrument and anatomical region must be distinguishable in real time. To meet this condition, we used the latest instance segmentation architecture, YOLACT. In this study, a data set comprising 5,319 extracted frames from 70 simple mastoidectomy surgery videos were used. Six surgical tools and five anatomic regions were identified for the training. The YOLACT-based model in the surgical environment was trained and evaluated for real-time object detection and semantic segmentation. Detection accuracies of surgical tools and anatomic regions were 91.2% and 56.5% in mean average precision, respectively. Additionally, the dice similarity coefficient metric for segmentation of the five anatomic regions was 48.2%. The mean frames per second of this model was 32.3, which is sufficient for real-time robotic applications.The current study investigated a novel visual distracter task as a potential diagnostic marker for the detection of cognitive impairment and the extent to which this compares in healthy ageing across two cultures. The Inhibition of a Recent Distracter Effect (IRD) refers to the inhibition of a saccadic eye movement towards a target that is presented at the location of a previous distracter. Two studies compared the IRD across a large cross-cultural sample comprising of young (N = 75), old European participants (N = 119), old south Asian participants (N = 83), participants with Dementia due to Alzheimer’s disease (N = 65) and Mild cognitive impairment (N = 91). Significantly longer saccadic reaction times on the target to distracter trials, in comparison to the target to target trials were evident in all groups and age cohorts. Importantly, the IRD was also preserved in participants with Alzheimer’s Disease and mild cognitive impairment demonstrating that the IRD is robust across cultures, age groups and clinical populations. Eye-tracking is increasingly used as a dual diagnostic and experimental probe for the investigation of cognitive control in Alzheimer’s disease. As a promising methodology for the early diagnosis of dementia, it is important to understand the cognitive operations in relation to eye-tracking that are well preserved as well as those that are abnormal. Paradigms should also be validated across ethnicity/culture, clinical groups and age cohorts.Limb apraxia, a disorder of skilled action not consequent on primary motor or sensory deficits, has traditionally been defined according to errors patients make on neuropsychological tasks. Previous models of the disorder have failed to provide a unified account of patients’ deficits, due to heterogeneity in the patients and tasks used. In this study we hypothesised that we may be able to map apraxic deficits onto principal components, some of which may be specific, whilst others may align with other cognitive disorders. We implemented principal component analysis (PCA) to elucidate core factors of the disorder in a preliminary cohort of 41 unselected left hemisphere chronic stroke patients who were tested on a comprehensive and validated apraxia screen. Three principal components were identified posture selection, semantic control and multi-demand sequencing. These were submitted to a lesion symptom mapping (VBCM) analysis in a subset of 24 patients, controlled for lesion volume, age and time post-stroke. The first component revealed no significant structural correlates. The second component was related to regions in inferior frontal gyrus, primary motor area, and adjacent parietal opercular (including inferior parietal and supramarginal gyrus) areas. The third component was associated with lesions within the white matter underlying the left sensorimotor cortex, likely involving the 2nd branch of the left superior longitudinal fasciculus as well as the posterior orbitofrontal cortex (pOFC). These results highlight a significant role of common cognitive functions in apraxia, which include action selection, and sequencing, whilst more specific deficits may relate to semantic control. Moreover, they suggest that previously described ‘ideomotor’ and ‘ideational’ deficits may have a common neural basis within semantic control. Further research using this technique would help elucidate the cognitive processes underlying limb apraxia, its neural correlates and their relationship with other cognitive disorders.The NSD proteins, namely NSD1, NSD2 and NSD3, are lysine methyltransferases, which catalyze mono- and di-methylation of histone H3K36. Rapamycin cell line They are multi-domain proteins, including two PWWP domains (PWWP1 and PWWP2) separated by some other domains. These proteins act as potent oncoproteins and are implicated in various cancers. However the biological functions of these PWWP domains are still largely unknown. To better understand the functions of these proteins’ PWWP domains, we cloned, expressed and purified all the PWWP domains of these NSD proteins to characterize their interactions with methylated histone peptides and dsDNA by quantitative binding assays and crystallographic analysis. Our studies indicate that all these PWWP domains except NSD1_PWWP1 bind to trimethylated H3K36, H3K79 peptides and dsDNA weakly. Our crystal structures uncover that the NDS3_PWWP2 and NSD2_PWWP1 domains, which hold an extremely long α-helix and α-helix bundle, respectively, need a conformation adjustment to interact with nucleosome.

Deel via Whatsapp