Activiteit

  • Fulton Skov heeft een update geplaatst 10 uren, 48 minuten geleden

    pliance with management strategies is followed. © 2021 Society of Chemical Industry.

    Tufting enteropathy (TE) is a rare congenital disorder often caused by mutations in the gene encoding epithelial cell adhesion molecule (EpCam). The disease leads to diarrhoea, intestinal failure and dependence on total parenteral nutrition (TPN). These patients often have liver impairments, but the pathology and mechanism of the damage are not well understood. We evaluated liver biopsies from TE patients to understand the pathophysiology.

    We identified three patients with TE who underwent liver biopsy. Two normal controls and 45 patients on TPN secondary to short gut syndrome were selected for comparison (five were age- and TPN duration matched to the TE patients).

    We found that all TE patients showed a complete loss of EpCam expression in enterocytes and biliary epithelial cells, while the normal and TPN groups show basolateral expression. Histologically TE patients showed ductopenia, which was not seen in control groups. E-cadherin and β-catenin are normally located along the lateral membrane of biliary epithelial cells. However, they were relocated to the apical membrane in TE patients, indicating a defect in the apical-basal polarity of cholangiocytes. We examined hepatic reparative cells and found near absence of hepatic progenitor cells and intermediate hepatobiliary cells with mild reactive ductular cells in TE patients.

    Our findings show that TE is associated with disrupted polarity of cholangiocyte and ductopenia. We demonstrate for the first time a role of EpCam in the maintenance of integrity of biliary epithelium. We also provided evidence for a disrupted development of hepatic reparative cells.

    Our findings show that TE is associated with disrupted polarity of cholangiocyte and ductopenia. We demonstrate for the first time a role of EpCam in the maintenance of integrity of biliary epithelium. We also provided evidence for a disrupted development of hepatic reparative cells.Due to expanding global trade and movement of people, new plant species are establishing in exotic ranges at increasing rates while the number of native species facing extinction from multiple threats grows. Tubacin cost Yet, how species losses and gains globally may, together, be linked to traits and macroevolutionary processes is poorly understood. Here, we show that, adjusting for diversification rate and clade age, the proportion of threatened species across flowering plant families is negatively related to the proportion of naturalised species per family. Moreover, naturalisation is positively associated with range size, short generation time, autonomous seed production and interspecific hybridisation, but negatively with age and diversification, whereas threat is negatively associated with range size and hybridisation, and positively with biotic pollination, age and diversification rate. That we find such a pronounced signature of naturalisation and threat across plant families suggests that both trait syndromes have coexisted over deep evolutionary time and counter to intuition, that neither strategy is necessarily superior to the other over long evolutionary timespans.

    Aphis gossypii, a polyphagous and recurrent pest induced by pesticides, causes tremendous loss crop yields each year. Previous studies on the mechanism of pesticide-induced sublethal effects mainly focus on the gene level. The symbiotic bacteria are also important participants of this mechanism, but their roles in hormesis are still unclear.

    In this study, life table parameters and 16S rRNA sequencing were applied to evaluate the sublethal and transgenerational effects of sulfoxaflor on adult A. gossypii after 24-h LC

    (6.96 mg L

    ) concentration exposure. The results indicated that the LC

    of sulfoxaflor significantly reduced the finite rate of increase (λ) and net reproductive rate (R

    ) of parent generation (G0), and significantly increased mean generation time (T) of G1 and G2, but not of G3 and G4. Both reproductive period and fecundity of G1 and G2 were significantly higher than those of the control. Furthermore, our sequencing data revealed that more than 95% bacterial communities were dominatetter manage the resurgence of A. gossypii. © 2021 Society of Chemical Industry.DNA polymerases are important enzymes involved in DNA replication and repair. Based on sequence homology, DNA polymerases have been grouped into distinct families, which are A, B, X, and Y. The Pol X family consists of four members Pol λ, μ, and β and terminal transferase or TdT. Members of the family X are involved in base excision repair, nonhomologous end joining (NHEJ), and V(D)J recombination. One of the most interesting pol X family members is DNA polymerase μ, discovered back in 2000. Subsequent studies established the importance of Pol μ as a repair polymerase in NHEJ and its interactions with the other proteins of the NHEJ machinery. Pol μ has a number of interesting properties, which sets it apart from the other known DNA polymerases, including its ability to synthesize DNA from an unpaired primer terminus as well in the complete absence of a template strand (terminal transferase activity). Another standout property of Pol μ is its reduced ability to discriminate between ribonucleotides and deoxyribonucleotides and its ability to utilize both ribonucleotides and deoxyribonucleotides as substrates during the gap-filling stage of NHEJ. In this review, we provide a brief overview of Pol μ in double-strand break repair and the current knowledge on its various functional aspects.

    HBV genotype G (HBV/G) is mainly found in co-infections with other HBV genotypes and was identified as an independent risk factor for liver fibrosis. This study aimed to analyse the prevalence of HBV/G co-infections in healthy European HBV carriers and to characterize the crosstalk of HBV/G with other genotypes.

    A total of 560 European HBV carriers were tested via HBV/G-specific PCR for HBV/G co-infections. Quasispecies distribution was analysed via deep sequencing, and the clinical phenotype was characterized regarding qHBsAg-/HBV-DNA levels and frequent mutations. Replicative capacity and expression of HBsAg/core was studied in hepatoma cells co-expressing HBV/G with either HBV/A, HBV/D or HBV/E using bicistronic vectors.

    Although no HBV/G co-infection was found by routine genotyping PCR, HBV/G was detected by specific PCR in 4%-8% of patients infected with either HBV/A or HBV/E but only infrequently in other genotypes. In contrast to HBV/E, HBV/G was found as the quasispecies major variant in co-infections with HBV/A.

Deel via Whatsapp