-
Bak Hartley heeft een update geplaatst 9 uren, 47 minuten geleden
All the results demonstrated that BPAA-βAFF hydrogel hold great potential application prospects in cartilage tissue engineering. STATEMENT OF SIGNIFICANCE Diphenylalanine was served as a core segment conjugating with 4-biphenylacetic acid (BPAA) to produce biphenyl-tripeptide compounds with transforming amino sequence, and multiple external stimuli was applied to study the gelation properties of the aromatic short peptide gelators. “FF” brick (phenylalanine-phenylalanine) was crucial for formation of fibrous supramolecular hydrogels. Meanwhile, the sequence of amino acids arrangement also had an essential effect on the gelation behavior. Optimal BPAA-βAFF with ultra-low minimum gelation concentration (0.4 mM, about 0.023 wt%) and similar microstructure to extracellular matrix (ECM) of nature cartilage tissue could promote the proliferation and ECM secretion of chondrocytes in vitro, and facilitate the formation of hyaline cartilage.Magnetic resonance imaging (MRI) has attracted increasing attention as a feasible alternative or adjunctive imaging modality for X-ray digital subtraction angiography because of the high tissue resolution and non-ionization radiation. In this study, a one-step electrospray method was developed to fabricate PVA microspheres encapsulated with in situ synthesized Fe3O4 nanoparticles. Fe3O4@PVA microspheres were mono-dispersed black spheres with a wide range of sizes (262-958 µm). The in situ-synthesized Fe3O4 nanoparticles were used as the contrast agent of MRI and the cross-linkers of PVA matrixes for the embolization purpose. In vivo evaluation of renal arteries of normal rabbits showed that Fe3O4@PVA microspheres had good embolic effect and enhanced capability of MRI. In vitro and in vivo biosafety assessment confirmed that Fe3O4@PVA microspheres had favorable biocompatibility. The DOX-loaded Fe3O4@PVA microspheres showed a typical drug-sustained release profile. These results suggest that the prepared DOX-lo development of MRI-guided TACE.Multiple human tissue engineered cartilage constructs are showing promise in advanced clinical trials but identifying important measures of manufacturing reproducibility remains a challenge. Cell Cycle inhibitor FDA guidance suggests measuring multiple mechanical properties prior to implantation, because these properties could affect the long term success of the implant. Additionally, these engineered cartilage mechanics could be sensitive to the autologous chondrocyte source, an inherently irregular manufacturing starting material. If any mechanical properties are sensitive to changes in the autologous chondrocyte source, these properties may need to be measured prior to implantation to ensure manufacturing reproducibility and quality. Therefore, this study identified variability in the compressive, friction, and shear properties of a human tissue engineered cartilage constructs due to the chondrocyte source. Over 200 constructs were created from 7 different chondrocyte sources and tested using 3 distinct mechanical experiments.ure multiple mechanical properties on hundreds of human tissue engineered cartilage constructs, we found the compressive properties are most sensitive to changes in the autologous chondrocyte source, an inherently irregular manufacturing variable. This sensitivity to the autologous chondrocyte source reveals the compressive properties should be measured prior to implantation to assess manufacturing reproducibility.Pleural and tracheal injuries remain significant problems, and an easy to use, effective pleural or tracheal sealant would be a significant advance. The major challenges are requirements for adherence, high strength and elasticity, dynamic durability, appropriate biodegradability, and lack of cell or systemic toxicity. We designed and evaluated two sealant materials comprised respectively of alginate methacrylate and of gelatin methacryloyl, each functionalized by conjugation with dopamine HCl. Both compounds are cross-linked into easily applied as pre-formed hydrogel patches or as in situ hydrogels formed at the wound site utilizing FDA-approved photo-initiators and oxidants. Material testing demonstrates appropriate adhesiveness, tensile strength, burst pressure, and elasticity with no significant cell toxicity in vitro assessments. Air-leak was absent after sealant application to experimentally-induced injuries in ex-vivo rat lung and tracheal models and in ex vivo pig lungs. Sustained repair of experimentand by dopamine conjugation to have desired mechanical characteristics for use in pleural and tracheal injuries. The sealants are easily applied, non-cytotoxic, and perform well in vitro and in vivo model systems of lung and tracheal injuries. These initial proof of concept investigations provide a platform for further studies.Macrophages play a key role in inflammation, infection, cancer, and repairing damaged tissues. Thus, modulating macrophages with engineered nanomaterials is an important therapeutic strategy for healing chronic inflammatory injuries. However, designing and manufacturing therapeutic nanomaterials remains challenging. Therefore, in this study, apoptotic-cell-inspired deformable phosphatidylserine (PS)- containing nanoliposomes (D-PSLs) with a Young’s modulus (E) of approximately 0.5 kPa were constructed via a facile and scalable method. Compared with similar-sized conventional PSLs with an E of approximately 80 kPa, the d-PSLs had a lower uptake efficacy, a much longer binding time to the cell surface, and induced enhanced anti-inflammatory and pro-healing effects via the synergistic effects of their mechanical stimulus and PS-receptor mediation after recognition by macrophages. In particular, chronic wound healing in diabetic rats showed that d-PSLs can efficiently promote M2-like macrophage polarization, incrabetic rats. We found that soft d-PSLs can persistently bind to macrophage membranes and enhance the anti-inflammatory and pro-healing responses of macrophages, which not only sheds new light on the design of therapeutic biomaterials based on regulating macrophages but also provide a promising biomimetic nano-therapeutic approach for chronic inflammatory injury.