Activiteit

  • Reilly McNulty heeft een update geplaatst 6 dagen, 15 uren geleden

    Functional foods enriched with plant polyphenols and anthocyanins in particular attract special attention due to multiple beneficial bioactive properties of the latter. We evaluated the effects of a grain diet rich in anthocyanins in a mouse model of Alzheimer’s disease induced by amyloid-beta (Aβ) and a transgenic mouse model of Parkinson’s disease (PD) with overexpression of human alpha-synuclein. The mice were kept at a diet that consisted of the wheat grain of near isogenic lines differing in anthocyanin content for five-six months. The anthocyanin-rich diet was safe and possessed positive effects on cognitive function. Anthocyanins prevented deficits in working memory induced by Aβ or a long-term grain mono-diet; they partially reversed episodic memory alterations. Both types of grain diets prolonged memory extinction and rescued its facilitation in the PD model. The dynamics of the extinction in the group fed with the anthocyanin-rich wheat was closer to that in a group of wild-type mice given standard chow. The anthocyanin-rich diet reduced alpha-synuclein accumulation and modulated microglial response in the brain of the transgenic mice including the elevated expression of arginase1 that marks M2 microglia. Thus, anthocyanin-rich wheat is suggested as a promising source of functional nutrition at the early stages of neurodegenerative disorders.Herein, we report the synthesis of an interesting graphene quantum material called “graphene quantum pins (GQPs)”. Morphological analysis revealed the interesting pin shape (width ~10 nm, length 50-100 nm) and spectral analysis elucidated the surface functional groups, structural features, energy levels, and photoluminescence properties (blue emission under 365 nm). The difference between the GQPs and graphene quantum dos (GQDs) isolated from the same reaction mixture as regards to their morphological, structural, and photoluminescence properties are also discussed along with the suggestion of a growth mechanism. Cytotoxicity and cellular responses including changes in biophysical and biomechanical properties were evaluated for possible biomedical applications of GQPs. The studies demonstrated the biocompatibility of GQPs even at a high concentration of 512 μg/mL. Our results suggest GQPs can be used as a potential bio-imaging agent with desired photoluminescence property and low cytotoxicity.With the rapid development of automated vehicles (AVs), more and more demands are proposed towards environmental perception. Among the commonly used sensors, MMW radar plays an important role due to its low cost, adaptability In different weather, and motion detection capability. Radar can provide different data types to satisfy requirements for various levels of autonomous driving. The objective of this study is to present an overview of the state-of-the-art radar-based technologies applied In AVs. Although several published research papers focus on MMW Radars for intelligent vehicles, no general survey on deep learning applied In radar data for autonomous vehicles exists. Therefore, we try to provide related survey In this paper. First, we introduce models and representations from millimeter-wave (MMW) radar data. Secondly, we present radar-based applications used on AVs. https://www.selleckchem.com/products/caerulein.html For low-level automated driving, radar data have been widely used In advanced driving-assistance systems (ADAS). For high-level automated driving, radar data is used In object detection, object tracking, motion prediction, and self-localization. Finally, we discuss the remaining challenges and future development direction of related studies.The paper presents the results of the experimental and numerical analysis of a six-hole orifice flow meter. The experiments were performed on humid air in a 100 mm diameter duct. The aim of this research was to investigate the mass flow and pressure drop dependency in an orifice of a predetermined shape and to compare the results obtained with computational formulas recommended in the ISO 5167-2 standard for a single-hole orifice flow meter. The experiments and calculations were performed on several multi-hole orifice geometries with different contraction coefficient in a wide range of Reynolds numbers. The pressure was probed immediately upstream and downstream of the orifice. The flow coefficient determined for the six-hole orifice flow meter investigated was compared with the flow coefficient of conventional single-hole orifice with the same contraction coefficient. The results from computational formulas for single-hole orifice from ISO 5167 are also included in the paper. During some experiments, an obstacle has been introduced in the duct at variable distance upstream from the orifice. The effect of the thus generated velocity field disturbance on the measured pressure drop was then investigated. Numerical simulation of the flow with the presence of the obstacle was also performed and compared with experimental data.Human leukocyte antigen (HLA) molecules are essential for anti-tumor immunity, as they display tumor-derived peptides to drive tumor eradication by cytotoxic T lymphocytes. HLA molecules are primarily studied as peptide-loaded complexes on cell membranes (mHLA) and much less attention is given to their secretion as soluble HLA-peptide complexes (sHLA) into bodily fluids. Yet sHLA levels are altered in various pathologies including cancer, and are thus of high interest as biomarkers. Disconcordance in results across studies, however, hampers interpretation and generalization of the relationship between sHLA levels and cancer presence, thereby impairing its use as a biomarker. Furthermore, the question remains to what extent sHLA complexes exert immunomodulatory effects and whether shifts in sHLA levels contribute to disease or are only a consequence of disease. sHLA complexes can also bear tumor-derived peptides and recent advancements in mass spectrometry now permit closer sHLA peptide cargo analysis. sHLA peptide cargo may represent a “liquid biopsy” that could facilitate the use of sHLA for cancer diagnosis and target identification for therapeutic vaccination. This review aims to outline the contradictory and unexplored aspects of sHLA and to provide direction on how the full potential of sHLA as a quantitative and qualitative biomarker can be exploited.

Deel via Whatsapp