-
Hwang Bowling heeft een update geplaatst 1 week, 3 dagen geleden
Monte Carlo simulations, fully constrained by experimental parameters, are found to agree well with a measured phase diagram of aqueous dispersions of nanoparticles with a moderate size polydispersity over a broad range of salt concentrations, c_s, and volume fractions, ϕ. Upon increasing ϕ, the colloids freeze first into coexisting compact solids then into a body centered cubic phase (bcc) before they melt into a glass forming liquid. The surprising stability of the bcc solid at high ϕ and c_s is explained by the interaction (charge) polydispersity and vibrational entropy.We consider conditions for the existence of boundary modes in non-Hermitian systems with edges of arbitrary codimension. Through a universal formulation of formation criteria for boundary modes in terms of local Green’s functions, we outline a generic perspective on the appearance of such modes and generate corresponding dispersion relations. In the process, we explain the skin effect in both topological and nontopological systems, exhaustively generalizing bulk-boundary correspondence to different types of non-Hermitian gap conditions, a prominent distinguishing feature of such systems. Indeed, we expose a direct relation between the presence of a point gap invariant and the appearance of skin modes when this gap is trivialized by an edge. This correspondence is established via a doubled Green’s function, inspired by doubled Hamiltonian methods used to classify Floquet and, more recently, non-Hermitian topological phases. Our work constitutes a general tool, as well as a unifying perspective for this rapidly evolving field. Indeed, as a concrete application we find that our method can expose novel non-Hermitian topological regimes beyond the reach of previous methods.We report the trapping of ultracold neutral Rb atoms and Ba^+ ions in a common optical potential in absence of any radio frequency (rf) fields. We prepare Ba^+ at 370 μK and demonstrate efficient sympathetic cooling by 100 μK after one collision. Our approach is currently limited by the Rb density and related three-body losses, but it overcomes the fundamental limitation in rf traps set by rf-driven, micromotion-induced heating. It is applicable to a wide range of ion-atom species, and may enable novel ultracold chemistry experiments and complex many-body dynamics.We present the first direct measurement of the elastohydrodynamic lift force acting on a sphere moving within a viscous liquid, near and along a soft substrate under nanometric confinement. Using atomic force microscopy, the lift force is probed as a function of the gap size, for various driving velocities, viscosities, and stiffnesses. The force increases as the gap is reduced and shows a saturation at small gap. The results are in excellent agreement with scaling arguments and a quantitative model developed from the soft lubrication theory, in linear elasticity, and for small compliances. For larger compliances, or equivalently for smaller confinement length scales, an empirical scaling law for the observed saturation of the lift force is given and discussed.We investigate the directional locking effects that arise when a monolayer of paramagnetic colloidal particles is driven across a triangular lattice of magnetic bubbles. We use an external rotating magnetic field to generate a two-dimensional traveling wave ratchet forcing the transport of particles along a direction that intersects two crystallographic axes of the lattice. We find that, while single particles show no preferred direction, collective effects induce transversal current and directional locking at high density via a spontaneous symmetry breaking. The colloidal current may be polarized via an additional bias field that makes one transport direction energetically preferred.We propose and demonstrate a method to reduce the pulse width and timing jitter of a relativistic electron beam through THz driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse copropagating in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of 4 from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics. This technique provides an effective way to manipulate beam longitudinal phase space with a THz pulse and may have a strong impact in accelerator and ultrafast science facilities that require femtosecond electron beams with tight synchronization to external lasers.We discuss the relation between entanglement and nonlocality in the hidden nonlocality scenario. Hidden nonlocality signifies nonlocality that can be activated by applying local filters to a particular state that admits a local hidden-variable model in the Bell scenario. We present a fully biseparable three-qubit bound entangled state with a local model for the most general (nonsequential) measurements. This proves for the first time that bound entangled states can admit a local model for general measurements. We furthermore show that the local model breaks down when suitable local filters are applied. Our results demonstrate the first example of activation of nonlocality in bound entanglement. Hence, we show that genuine hidden nonlocality does not imply entanglement distillability.The fundamental problem of sampling from the limiting distribution of quantum walks on networks, known as mixing, finds widespread applications in several areas of quantum information and computation. Of particular interest in most of these applications is the minimum time beyond which the instantaneous probability distribution of the quantum walk remains close to this limiting distribution, known as the “quantum mixing time”. However, this quantity is only known for a handful of specific networks. Protein Tyrosine Kinase inhibitor In this Letter, we prove an upper bound on the quantum mixing time for almost all networks, i.e., the fraction of networks for which our bound holds, goes to one in the asymptotic limit. To this end, using several results in random matrix theory, we find the quantum mixing time of Erdös-Renyi random networks networks of n nodes where each edge exists with probability p independently. For example, for dense random networks, where p is a constant, we show that the quantum mixing time is O(n^3/2+o(1)). In addition to opening avenues for the analytical study of quantum dynamics on random networks, our work could find applications beyond quantum information processing.