-
Stefansen Brennan heeft een update geplaatst 5 dagen, 4 uren geleden
Self-assembled polymer nanoparticles have tremendous potential in biomedical and environmental applications. For all applications, tailored polymer chemistries are critical. In this study, we demonstrate a precursor approach in which an activated, organic solvent-soluble block polymer precursor is modified through mild postpolymerization modifications to access new polymer structures. We synthesized and characterized poly(isoprene)-block-poly(di-Boc acrylamide) diblock polymers. This activated-acrylamide-based polymer was then reacted with amines or reductants in the absence of catalysts to yield the hydrophilic blocks polyacrylamide, poly(hydroxypropylene), and poly(N-ethyl acrylamide). The resulting amphiphilic block polymers self-assembled in water to form polymersomes, as confirmed by cryo-electron microscopy and confocal microscopy. The approach also enables simple functionalization with specialized ligands, which we demonstrated by tagging polymers with an amino-fluorophore and imaging by confocal microscopy. We expect that the methodologies established in this study will open doors to new and useful solution nanostructures with surface chemistries that can be optimized for various applications.In the search for antiviral cyclopeptides against influenza A virus, five unprecedented Caryophyllaceae-type cyclopeptides (1-5) were isolated from the leaves of Melicope pteleifolia. Their chemical structures and absolute configurations were unambiguously determined by means of advanced Marfey’s analysis and comprehensive spectroscopic analyses including two-dimensional nuclear magnetic resonance and MS/MS fragmentation. Interestingly, compounds 3-5 contain an unusual heterocycle, a 3a-hydroxypyrroloindole moiety, which was biosynthetically formed by a nucleophilic cyclization from the least abundant amino acid, tryptophan, precursor and has aroused a great interest in the aspect of chemical diversity and biological activity. All isolates (1-5) were evaluated for their protective effects against influenza A viruses H1N1 and H9N2 in MDCK cells. All isolated cyclopeptides exhibited strong anti-influenza activity, especially against H1N1. Compound 3 showed the most potent CPE inhibition effect, which was stronger than that of the positive control ribavirin against H1N1, with an EC50 (μM) of 2.57 ± 0.45 along with higher selectivity.In this study, a new class of bifunctional inhibitors of bacterial ureases, important molecular targets for antimicrobial therapies, was developed. The structures of the inhibitors consist of a combination of a phosphonate or (2-carboxyethyl)phosphinate functionality with a catechol-based fragment, which are designed for complexation of the catalytic nickel ions and covalent bonding with the thiol group of Cys322, respectively. Compounds with three types of frameworks, including β-3,4-dihydroxyphenyl-, α-3,4-dihydroxybenzyl-, and α-3,4-dihydroxybenzylidene-substituted derivatives, exhibited complex and varying structure-dependent kinetics of inhibition. Among irreversible binders, methyl β-(3,4-dihydroxyphenyl)-β-(2-carboxyethyl)phosphorylpropionate was observed to be a remarkably reactive inhibitor of Sporosarcina pasteurii urease (kinact/KI = 10 420 s-1 M-1). The high potential of this group of compounds was also confirmed in Proteus mirabilis whole-cell-based inhibition assays. Some compounds followed slow-binding and reversible kinetics, e.g., methyl β-(3,4-dihydroxyphenyl)-β-phosphonopropionate, with Ki* = 0.13 μM, and an atypical low dissociation rate (residence time τ = 205 min).Quantum time-dependent wave packet dynamics studies on the nonadiabatic Be+(2P) + HD → BeH+/BeD+ + D/H reaction are performed for the first time employing recently constructed diabatic potential energy surfaces. Strong intramolecular isotope effects and unusual results are presented, which are attributed to the dynamic effects of shallow wells induced by avoided crossing on the diagonal V22 d surface. The BeH+ + D and BeD+ + H channels are dominated by high-J and low-J partial waves, respectively. The BeD+/BeH+ branching ratio is larger than 10 at low energy and gradually decreases with increasing collision energy. The BeH+ product is primarily distributed at low vibrational states, whereas there exists an obvious population inversion of vibrational states on the BeD+ product. The results of differential cross sections suggest that the formation of the BeH+ + D channel favors a direct reaction process, while the BeD+ + H channel is mainly generated by the complex-forming mechanism.The partially linearized density matrix formalism for nonadiabatic dynamics is adapted to incorporate a classical external electromagentic field into the system Hamiltonian. This advancement encompasses the possibility of describing field-driven dynamics and computing a variety of linear and nonlinear spectroscopic signals beyond the perturbative limit. Poly(vinyl alcohol) The capabilities of the developed approach are demonstrated on a simple two-state vibronic model coupled to a bath, for which we (a) perform an exhaustive search in the field parameter space for optimal state preparation and (b) compute time-resolved transient absorption spectroscopy to monitor the effect of different pulse shapes on measurable experimental signals. While no restrictions on the form of the field have to be assumed, we focus here on Gaussian shaped (linearly) chirped pulses.Glycosaminoglycans (GAGs) contribute to the treatment of many human diseases, especially in the field of thrombosis, because of their anticoagulant activity. GAGs interrupt the coagulation process by interacting with multiple coagulation factors through defined sequences within their linear and negatively charged chains, which are not fully elucidated. Numerous methods have been developed to characterize the structure of pharmaceutical GAGs, including intravenously or subcutaneously administered heparin and orally administered sulodexide. However, most currently available methods only focus on the oligosaccharide portion or analyze the whole mixture because longer-chain polysaccharides are extremely difficult to resolve by chromatographic separation. We have established two novel electrophoresis-mass spectrometry methods to provide a panoramic view of the structures of pharmaceutical GAGs. In the first method, an in-gel digestion procedure was developed to recover GAGs from the polyacrylamide gels, while in the second method, a strong anion exchange ultrafiltration procedure was developed to extract multiple GAG species from the agarose gels.