Activiteit

  • Melgaard Buus heeft een update geplaatst 1 week, 1 dag geleden

    This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.The fate of selected common pharmaceuticals and four of their major conjugates in wastewater batch bioreactors was evaluated to determine how treatment plant parameters such as addition of air, and the presence of waste activated sludge (WAS) could influence the removal of parent compounds and conjugates. Under a realistic hydraulic residence time (HRT) for each treatment sub-process of approximately 2 h, acetaminophen and its sulfate metabolite were both rapidly degraded (>99%). Propranolol was sulfated and concurrently removed. Deconjugation of N-acetylsulfamethoxazole and sulfamethoxazole-glucuronide contributed to increases of the parent sulfamethoxazole. Thyroxine was resistant to degradation, while thyroxine-glucuronide was rapidly deconjugated (>90% in less then 2 h). In the absence of WAS, sorption to suspended solids was another major removal mechanism for acetaminophen, propranolol, sulfamethoxazole, and thyroxine. However, with WAS, concentrations associated with suspended solids decreased for all analytes within 24 h. These results indicate that both conjugation and back-transformation are compound-specific and dependent on parameters such as HRT, addition of microbial content, and suspended solids levels. Therefore, conjugation-deconjugation processes may strongly influence the speciation of pharmaceuticals and their fate in wastewater treatment plant effluents.Per- and polyfluoroalkyl substances (PFASs) have been ubiquitously detected in the environment and marine animals. However, little is known about these substances and their associations with health parameters in wild terrestrial mammals. In this study, we determined PFAS levels and distribution in the blood of captive Siberian tigers in Harbin, China, and evaluated potential exposure pathways by daily intake. In addition, for the first time, we explored the associations between serum PFAS concentrations and clinical parameters. Results showed that perfluorooctanoate (PFOA) was the dominant PFAS compound in blood (accounting for 64%), followed by perfluorooctanesulfonate (PFOS). In addition, 62 chlorinated polyfluorinated ether sulfonate (62 Cl-PFESA) concentrations were also detected in blood and dietary food. Furthermore, significant positive age relationships were observed for levels of perfluoroheptanoate (PFHpA), PFOA, PFOS, and 62 Cl-PFESA in the blood of female tigers. Results showed that PFOA and PFOS in dietary food accounted for over 70% of total daily intake of PFASs, indicating that meat consumption is a predominant exposure pathway in tigers. We also found positive associations between higher exposure to PFASs (including PFOA, PFOS, and 62 Cl-PFESA) and elevated serum levels of alanine transaminase (ALT), a marker of liver damage. Thus, comprehensive health assessments of PFAS burdens in wildlife are needed.In many cases, it is difficult to isolate the key microbial organisms from their communities present in natural environments. Metagenomic methods can recover near-complete genomes of the dominant microbial organisms in communities, and metatrancriptomic data could further reveal important genes and pathways related to their functions. In this study, three draft genomes of Clostridium ultunense-like bacteria were recovered based on metagenomic analyses, which is an essential syntrophic acetate-oxidizing bacteria (SAOB) member for maintaining high methane production in high-ammonium biogas digesters but difficult to isolate from its syntrophic partners. Firstly, syntrophic acetate-oxidizing bacteria in a microbial community series were enriched from a biogas digester by adding sodium acetate in the medium. Global analyses of C. ultunense suggested that it would combine the pyruvate-serine-glycine pathway and part of the Wood-Ljungdahl pathway for syntrophic acetate oxidization. Moreover, metatranscriptomic analyses showed that all of the genes of the proposed syntrophic acetate-oxidizing pathway present in the genome were actively transcribed in the microbiota. The functional bacterial enrichment and refined assembly method identify rare microbial genome in complex natural microbiota, which help to recover the syntrophic acetate-oxidizing pathway in C. ultunense strains in this study.Next-generation sequencing (NGS) technologies have come of age as preferred technologies for screening of genomic variants of pathologic and therapeutic potential. Because of their capability for high-throughput and massively parallel sequencing, they can screen for a variety of genomic changes in multiple samples simultaneously. This has made them platforms of choice for clinical testing of solid tumors and hematological malignancies. Consequently, they are increasingly replacing conventional technologies, such as Sanger sequencing and pyrosequencing, expression arrays, real-time PCR, and fluorescence in situ hybridization methods, for routine molecular testing of tumors. this website However, one limitation of routinely used NGS technologies is the inability to detect low-level genomic variants with high accuracy. This can be attributed to the frequent occurrence of low-level sequencing errors and artifacts in NGS workflow that need specialized approaches to be identified and eliminated. This review will focus on the origins and nature of these artifacts and recent improvements in the NGS technologies to overcome them to facilitate accurate high-sensitive detection of low-level mutations.

Deel via Whatsapp