Activiteit

  • Asmussen Schulz heeft een update geplaatst 1 week, 2 dagen geleden

    In order to assess the environmental risk of a pharmaceutical, information is needed on the sorption of the compound to solids. Here we use a high-quality database of measured sorption coefficients, all determined following internationally recognised protocols, to evaluate models that have been proposed for estimating sorption of pharmaceuticals from chemical structure, some of which are already being used for environmental risk assessment and prioritization purposes. Our analyses demonstrate that octanol-water partition coefficient (Kow) alone is not an effective predictor of ionisable pharmaceutical sorption in soils. Polyparameter models based on pharmaceutical characteristics in combination with key soil properties, such as cation exchange capacity, increase model complexity but yield an improvement in the predictive capability of soil sorption models. Nevertheless, as the models included in this analysis were only able to predict a maximum of 71% and 67% of the sorption coefficients for the compounds to within one log unit of the corresponding measured value in soils and sludge, respectively, there is a need for new models to be developed to better predict the sorption of ionisable pharmaceuticals in soil and sludge systems. The variation in sorption coefficients, even for a single pharmaceutical across different solid types, makes this an inherently difficult task, and therefore requires a broad understanding of both chemical and sorbent properties driving the sorption process.The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson’s disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease.The mycotoxin zearalenone (ZEN), which frequently contaminates cereal-based human food and animal feed, is known to have an estrogenic effect. The biological response associated with exposure to ZEN has rarely been reported in organs other than the reproductive system. In the intestine, several studies suggested that ZEN might stimulate molecular changes related to the activation of early carcinogenesis, but the molecular mechanisms behind these events are not yet known. In this study, we investigated gene expression and changes in protein abundance induced by acute exposure to ZEN in the jejunum of castrated male pigs using an explant model. Our results indicate that ZEN induces the accumulation of ER but not ER, modulates Wnt/β-catenin and TGF- signaling pathways, and induces molecular changes linked with energy sensing and the antimicrobial activity without inducing inflammation. Our results confirm that the intestine is a target for ZEN, inducing changes that promote cellular proliferation and could contribute to the onset of intestinal pathologies.Long-term exposure to benzo(a)pyrene (BaP) poses a serious genotoxic threat to human beings. This in vitro study investigated the potential of inactivated Bifidobacterium animalis subsp. lactis BI-04 in alleviating the damage caused by BaP in colon epithelial cells. A concentration of BaP higher than 50 μM strongly inhibited the growth of colon epithelial cells. The colon epithelial cells were treated with 50 μM BaP in the presence or absence of inactivated strain BI-04 (~5 ´ 108 CFU/mL). The BaP-induced apoptosis of the colon epithelial cells was retarded in the presence of B. lactis BI-04 through activation of the PI3K/ AKT signaling pathway, and p53 gene expression was decreased. The presence of the BI-04 strain reduced the intracellular oxidative stress and DNA damage incurred in the colon epithelial cells by BaP treatment due to the enhanced expression of antioxidant enzymes and metabolism-related enzymes (CYP1A1). The data from comet assay, qRT-PCR, and western blot analysis showed that the cytotoxic effects of BaP on colon epithelial cells were largely alleviated because the bifidobacterial strain could bind to this carcinogenic compound. The in vitro study highlights that the consumption of commercial probiotic strain BI-04 might be a promising strategy to mitigate BaP cytotoxicity.A prominent feature of obstructed tissue regeneration following injury in general, and fibrotic lung tissue in particular, is fibroblast proliferation and accumulation. read more The Fas/FasL apoptotic pathway has been shown to be involved in human idiopathic pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis in rodents. We previously showed that in normal injury repair, myofibroblasts’ accumulation is followed by their decline by FasL+ T cell-induced cell death. In pathological lung fibrosis, myofibroblasts resist cell death and accumulate. Like other members of the tumor necrosis factor (TNF) family, membrane-bound FasL can be cleaved from the cell surface to generate a soluble form (sFasL). Metalloproteinases (MMPs) are known to convert the membrane-bound form of FasL to sFasL. MMP-7 knockout (KO) mice were shown to be protected from bleomycin (BLM)-induced lung fibrosis. In this study, we detected increased levels of sFasL in their blood serum, as in the lungs of patients with IPF, and IPF-lung myofibroblast culture medium.

Deel via Whatsapp