Activiteit

  • Henneberg Keller heeft een update geplaatst 1 week, 4 dagen geleden

    The Li2CO3 and carbon reactants may improve rate capability by facilitating Li+ transport, and LiF may stabilize the Li2O2 (and/or LiO2) produced by the oxygen redox reaction with lithia. Therefore, the additive-enhanced electrochemical performance of the cell is attributed to the effects of the interface layer derived from additive decomposition during cycling. Copyright © 2020 American Chemical Society.In this study, a quadratic cavity is simulated using computational fluid dynamics (CFD). The simulated cavity includes nanofluids containing copper (Cu) nanoparticles. The L-shaped thermal element exists in this cavity to produce heat distribution along with the domain. Results such as fluid velocity distribution in two dimensions and the fluid temperature field were generated as CFD simulation results. These outputs were evaluated using an adaptive neuro-fuzzy inference system (ANFIS) for learning and then the prediction process. In the training process related to the ANFIS method, x coordinates, y coordinates, and fluid temperature are three inputs, and the fluid velocity in line with Y is the output. During the learning process, the data have been classified using a clustering method called grid clustering. In line with the attempt to rise ANFIS intelligence, the alterations in the number of input parameters and of membership structure have been analyzed. After reaching the highest level of intelligence, the fluid velocity nodes were predicted to be in line with y, especially cavity nodes, which were absent in CFD simulations. The simulation findings indicated that there is a good agreement between CFD and clustering approach, while the total simulation time for learning and prediction is shorter than the time needed for calculation using the CFD method. Copyright © 2020 American Chemical Society.This work highlights a facile green route for the one-step synthesis of iron oxide core-double-shell nanoparticles (NPs) and aluminum phosphide (AlP) nanosheets by pulsed laser ablation of the mineral turquoise target from Nishapur in the presence of an ethanol solvent. High-resolution transmission electron microscopy, selected-area electron diffraction pattern, and field emission scanning electron microscopy (FESEM) in combination with energy-dispersive X-ray mapping revealed the formation of NPs with a typical core@double-shell structure in which crystalline α-Fe2O3 (iron oxide) formed the core, while SiO2 (quartz) and (K, H3O)Fe3(SO4)2(OH6) (jarosite) participated as the inner and outer shell, respectively. However, the application of laser ablation on the turquoise phase of the target led to the formation of AlP nanosheets which was confirmed by the X-ray diffraction patterns and FESEM images. Strong absorption of the vein-ablated species in the UV region (250-360 nm) was the characteristic feature of α-Fe2O3 and jarosite phases, while the absorption band at 250-300 nm for the turquoise-ablated species was related to the presence of Cu compound species and also the α-Fe2O3 phase in the sample. Photoluminescence emission spectra for the vein-ablated species depicted a peak centered at 370 nm, while a peak located at 364 nm was ascribed to the turquoise-ablated species. In particular, these hybrid NPs with high purity and stability may offer new opportunities for bio-applications such as anticancer agents and water/wastewater applications. Copyright © 2020 American Chemical Society.Various materials and approaches have been used to optimize the biocompatibility of mesh to reduce the implant-induced host response in intraperitoneal onlay mesh (IPOM) repair. Ineffective host integration, limited resistance to contamination, and untargeted administration hinder the wider application of the currently available clinical options. In this study, human amniotic membrane (HAM) was decellularized, fully characterized, and compared with porcine small intestinal submucosa (SIS) in terms of its structure, components, and bioactivity. In an in vivo study, HAM was reinforced with silk fibroin (SF) membrane, which was fabricated as a biodegradable submicroscale template by electrospinning, to construct a bilayer composite mesh. The independent SF membrane, associated with HAM and SIS, was evaluated for tissue remodeling in vitro. The HAM-SF and SIS meshes were then characterized morphologically and implanted intraperitoneally into Sprague-Dawley rats for 28 days for macroscopic investigation of their ile than SIS in IPOM repair. When combined with SF, HAM displayed similar mechanical properties to SIS. In conclusion, HAM displayed better bioactivity and biocompatibility than SIS. After its reinforcement with SF, HAM-SF is a promising biocomposite mesh for IPOM repair. Copyright © 2020 American Chemical Society.We present aptamer-based sensing using a coupled acoustic-gravitational (CAG) field, which transduces a change in the density of a microparticle (MP) to a change in the levitation coordinate. A large density of the MP is initially induced by the binding of gold nanoparticles (AuNPs) on the MP through sandwich hybridization with aptamer DNA molecules. Targets added to the system interact with the aptamer DNA molecules to form complexes, and the duplex between the aptamer and the probe DNA molecules is dissociated. This leads to the release of AuNPs from the MP and a decrease in its density. As the target concentration increases, the levitation coordinate of the MP increases. From the levitation coordinate shift, we can determine the target concentration. The detection limits for adenosine triphosphate, dopamine, and ampicillin as test targets are 9.8 nM, 17 nM, and 160 pM, respectively. https://www.selleckchem.com/products/rmc-9805.html The dissociation constants for the aptamer-target complexes are quantitatively determined from the dependence of the levitation coordinate on the target concentration. This scheme is a useful analytical tool not only for the trace analyses of targets but also for the evaluation of aptamer-target interactions. Copyright © 2020 American Chemical Society.The RNA aptamer A4 binds specifically to tumor prostate cells. A4 was modified (mA4) by adding deoxyribonucleotides to its ends to remove the reactive 2′ hydroxyl groups of RNA’s sugar at the ends of the aptamer and to make it more stable to widespread RNase contamination in laboratories. Thus, mA4 would be more suitable to use in the clinical settings of prostate cancer (PCa). We aimed to characterize this optimized oligonucleotide to verify its potential as a diagnostic tool. The sequences and structures of A4 and mA4 were compared through in silico approaches to corroborate their similarity. Then, the degradation of mA4 was measured in appropriate media and human plasma for in vitro tests. In addition, the binding abilities of A4 to prostate cells were contrasted with those of mA4. The effects of mA4 were assessed on the viability, proliferation, and migration of human prostate cell lines RWPE-1 and PC-3 in three-dimensional (3D) cell cultures. mA4 showed configurational motifs similar to those of A4, displayed a half-life in plasma substantially higher than A4, and exhibited a comparable binding capacity to that of A4 and unaltered viability, proliferation, and migration of prostatic cells.

Deel via Whatsapp