Activiteit

  • Degn Wolf heeft een update geplaatst 1 week, 4 dagen geleden

    The issue of exposure assessment has been investigated for over 40 years and the most important innovations regard technologies developed to measure pollutants, statistical methodologies to assess exposure, and software development. Thanks to these changes, it has been possible to develop and apply geo-coding and statistical methods to reduce the ecological bias when considering the relationship between humans, geographic areas, pollutants, and health outcomes. The results of the present review may contribute to optimize the use of public health resources.Heavy metal pollution is a global problem although its sources and trends differ by region and time. To data, no published research has reported heavy metal pollution in global rivers and lakes. This study reviewed past sampling data across six continents from 1970 to 2018 and analyzed the trends and sources of 10 heavy metal species in sediments from 289 rivers and 133 lakes. Collectively, river sediments showed increasing trends in Cd, Cr, Ni, Mn, and Co and decreasing trends in Hg, indicating that rivers acted as a sink for the former and a source for the latter. Lake sediments showed increasing trends in Pb, Hg, Cr, and Mn, and decreasing trends in Cd, Zn, and As, indicating that lakes acted as a sink for the former and a source for the latter. Due to difference in natural backgrounds and development stage in continents, mean metal concentrations were generally higher in Europe and North America than in Africa, Asia, and South America. Principal component analysis showed that main metal source was mining and manufacturing from the 1970s to 1990s and domestic waste discharge from the 2000s to 2010s. Metal sources in sediments differed greatly by continent, with rock weathering dominant in Africa, mining and manufacturing dominant in North America, and domestic waste discharge dominant in Asia and Europe. Global trends in sediment metal loads and pollution-control measures suggest that the implementation of rigorous standards on metal emissions, limitations on metal concentrations in manufactured products, and the pretreatment of metal-contaminated waste have been effective at controlling heavy metal pollution in rivers and lakes. Thus, these efforts should be extended globally.Heavy metal (HM) contamination is a serious global environmental crisis. Over the past decade, industrial effluents, modern agricultural practices, and other anthropogenic activities have significantly depleted the soil environment. In plants, metal toxicity leads to compromised growth, development, productivity, and yield. Also, HMs negatively affect human health due to food chain contamination. Thus, it is imperative to reduce metal accumulation and toxicity. AZD9291 In nature, certain plant species exhibit an inherent capacity of amassing large amounts of HMs with remarkable tolerance. These plants with unique characteristics can be employed for the remediation of contaminated soil and water. Among different plant species, Sorghum bicolor has the potential of accumulating huge amounts of HMs, thus could be regarded as a hyperaccumulator. This means that it is a metal tolerant, high biomass producing energy crop, and thus can be utilized for phytoremediation. However, high concentrations of HMs hamper plant height, root hair density, shoot biomass, number of leaves, chlorophyll, carotenoid, and carbohydrate content. Thus, understanding the response of Sorghum towards different HMs holds considerable importance. Considering this, we have uncovered the basic information about the metal uptake, translocation, and accumulation in Sorghum. Plants respond to different HMs via sensing, signaling, and modulations in physico-chemical processes. Therefore, in this review, a glimpse of HM toxicity and the response of Sorghum at the morphological, physiological, biochemical, and molecular levels has been provided. The review highlights the future research needs and emphasizes the extensive molecular dissection of Sorghum to explore its genetic adaptability towards different abiotic stresses that can be exploited to develop resilient crop varieties.Mycotic mastitis is a neglected problem type of incurable chronic mastitis in sheep flock of many countries which associated with wide economic burden. In the current study, a total of 600 ewes at Menofia governorate, Egypt, were subjected to clinical and molecular examination using PCR-RFLP to estimate the prevalence of chronic mycotic mastitis and identify the causative agent. A structured questionnaire is distributed to shepherds in the study area to identify the risky behavioral practices being followed and lead to increase the prevalence of mycotic mastitis cases. The results showed that out of 600 ewes examined, 150 showed clinical signs of mastitis (25%). A total of 25 ewes with clinical mastitis did not respond to antibiotic treatment for long time and suffered from mycotic mastitis (16.7%, CI 11.1-23.6%). A total of 31 fungal isolates were identified 14 yeast spp., Candida albicans, Candida parapasilosis, Candida rugosa, and Saccharomyces spp. and 17 mold spp., Alternaria spp., and Fusarium spp. Resuls.Viruses are widespread in alfalfa (Medicago sativa L.), representing a key limitation to the production of this important forage plant. Understanding the diversity of plant viruses in alfalfa and their potential vectors will play an important role in management to minimize the emergence, transmission, and impact of viruses. Next-generation sequencing (NGS) targeting the transcriptome was applied to monitor the virus communities in alfalfa and its two main pests, thrips (Odontothrips loti Haliday and Frankliniella intonsa Trybom) and aphids (Acyrthosiphon pisum Mordvilko and Therioaphis trifolii Monell). A comparison of transcriptome datasets with reference databases revealed the presence of eight candidate viruses. Five out of the eight viruses, alfalfa mosaic virus (AMV), Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), Medicago sativa amalgavirus 1 (MsAV1), and bean yellow mosaic virus (BYMV), were confirmed by RT-PCR. We identified and determined the presence of four RNA viruses from alfalfa samples, two viruses (AMV and MsAPV1) from thrips samples, and one virus (BYMV) from T.

Deel via Whatsapp