-
Lund Abdi heeft een update geplaatst 1 week, 6 dagen geleden
Early-stage patient’s perspective seems to be more in line with neurologist’s perspective, while the views of advanced-stage patients were closer to physiotherapist’s views. Conclusion FM concept was considered as intuitive and useful. FM limitations have an important physical and social impact in the advanced stage of the disease. Although patients and health professionals acknowledge walking aid’s benefit improving patient’s FM, the prejudice associated with this type of tools limits its recommendation and use.Background For adult multiple sclerosis (MS) patients, impaired temporal processing of simultaneity/successiveness has been frequently reported although interval timing has been investigated in neither adult nor pediatric MS patients. We aim to extend previous research in two ways. First, we focus on interval timing (instead of simultaneity/successiveness) and differentiate between sensory-automatic processing of intervals in the subsecond range and cognitive processing of intervals in the one-second range. Second, we investigate whether impaired temporal information processing would also be observable in pediatric MS patients’ interval timing in the subsecond and one-second ranges. Methods Participants were 22 pediatric MS patients and 22 healthy controls, matched for age, gender, and psychometric intelligence as measured by the Culture Fair Test 20-R. They completed two auditory interval-timing tasks with stimuli in the subsecond and one-second ranges, respectively, as well as a frequency discrimination tasomotor coordination typically reported in pediatric MS patients.Background and Objective Oral anticoagulation (OAC) for secondary stroke prevention is recommended in atrial fibrillation (AF) and other sources of cardioembolic stroke. Our objectives were to explore the differences in ischemic and hemorrhagic events when using OAC for secondary stroke prevention according to the type of anticoagulant treatment and to analyze the number and reasons for OAC switches during long-term follow-up. Methods Ischemic stroke (IS) patients who were discharged on OAC for secondary stroke prevention from January 2014 to October 2017 were recruited in a prospective, multicenter, hospital-based registry. Follow-up at 3 months was scheduled at the outpatient clinic with subsequent annual phone interviews for 3 years. Patients were classified into three study groups according to OAC at discharge Vitamin K antagonist (VKA), Factor Xa inhibitor (FXa), or direct thrombin inhibitor (DTI). We compared stroke recurrences, intracranial hemorrhage, major bleeding, and all-cause mortality during thein any of the analyzed outcomes. The main cause for OAC switch during follow-up was stroke recurrence.Introduction Identifying intracranial atherosclerotic stenosis-related occlusion (ICAS-O) in acute ischemic stroke has important clinical significance. Correct identification would help operators devise an optimal recanalization strategy. However, it is often hard to make accurate judgments in emergency situations before thrombectomy. Here, we propose a new image marker for ICAS-O based on the appearance of occluded vessels on baseline digital subtraction angiography. Materials and Methods We retrospectively reviewed patients with acute ischemic stroke who underwent endovascular therapy from August 2017 to February 2020 at our center. ICAS-O was identified by residual focal stenosis at occluded vessels after successful recanalization. The jet-like appearance was defined as appearance of pencil-tip-like or line-linked contrast filling of the occlusion edge. A non-jet-like appearance was defined as appearance of convex, concave, or flat edge contrast filling. see more The proportion of jet-like appearance in different o The sensitivity, specificity, and accuracy values for predicting ICAS-O was 96, 78, and 83%. Conclusion The jet-like appearance on the angiogram was an image marker for ICAS-O, with relatively high sensitivity and specificity, which could help operators predict underlying intracranial atherosclerotic stenosis in a timely manner and choose the optimal intervention strategy during endovascular therapy.It has long been acknowledged that memory changes over the course of one’s life, irrespective of diseases like dementia. Approaches to mitigate these changes have however yielded mixed results. Brain stimulation has been identified as one novel approach of augmenting older adult’s memory. Thus far, such approaches have however been nuanced, targeting different memory domains with different methodologies. This has produced an amalgam of research with an unclear image overall. This systematic review therefore aims to clarify this landscape, evaluating, and interpreting available research findings in a coherent manner. A systematic search of relevant literature was conducted across Medline, PsycInfo, Psycarticles and the Psychology and Behavioral Sciences Collection, which uncovered 44 studies employing non-invasive electrical brain stimulation in healthy older adults. All studies were of generally good quality spanning numerous memory domains. Within these, evidence was found for non-invasive brain stimulation augmenting working, episodic, associative, semantic, and procedural memory, with the first three domains having the greatest evidence base. Key sites for stimulation included the left dorsolateral prefrontal cortex (DLPFC), temporoparietal region, and primary motor cortex, with transcranial direct current stimulation (tDCS) holding the greatest literature base. Inconsistencies within the literature are highlighted and interpreted, however this discussion was constrained by potential confounding variables within the literature, a risk of bias, and challenges defining research aims and results. Non-invasive brain stimulation often did however have a positive and predictable impact on older adult’s memory, and thus warrants further research to better understand these effects.Age-related degeneration of the cervical spinal column is the most common cause of spinal cord lesions. T1 mapping has been shown to indicate the grade and site of spinal cord compression in low grade spinal canal stenosis (SCS). Aim of our study was to further investigate the diagnostic potential of a novel T1 mapping method at 0.75 mm resolution and 4 s acquisition time in 31 patients with various grades of degenerative cervical SCS. T1 mapping was performed in axial sections of the stenosis as well as above and below. Included subjects received standard T2-weighted MRI of the cervical spine (including SCS-grading 0-III), electrophysiological, and clinical examination. We found that patients with cervical SCS showed a significant difference in T1 relaxation times within the stenosis (727 ± 66 ms, mean ± standard deviation) in comparison to non-stenotic segments above (854 ± 104 ms, p less then 0.001) and below (893 ± 137 ms, p less then 0.001). There was no difference in mean T1 in non-stenotic segments in patients (p = 0.