Activiteit

  • Donaldson Russo heeft een update geplaatst 4 dagen, 7 uren geleden

    Both synthetic and Internet images are used to train a CNN which is modified from the fully convolutional network (FCN) to segment face vitiligo lesions. The results show that 1) the synthetic images effectively improve segmentation performance; 2) the proposed algorithm achieves 1.06% error for the face vitiligo area estimation and 3) it is more accurate than two dermatologists and all the previous automated vitiligo segmentation methods, which were designed for segmentation vitiligo on pure skin.Accurate classification of Cushing’s Syndrome (CS) plays a critical role in providing the early and correct diagnosis of CS that may facilitate treatment and improve patient outcomes. Diagnosis of CS is a complex process, which requires careful and concurrent interpretation of signs and symptoms, multiple biochemical test results, and findings of medical imaging by physicians with a high degree of specialty and knowledge to make correct judgments. In this article, we explore the state of the art machine learning algorithms to demonstrate their potential as a clinical decision support system to analyze and classify CS to facilitate the diagnosis, prognosis, and treatment of CS. Prominent algorithms are compared using nested cross-validation and various class comparison strategies including multiclass, one vs. VBIT-4 all, and one vs. one binary classification. Our findings show that Random Forest (RF) algorithm is most suitable for the classification of CS. We demonstrate that the proposed approach can classify CS with an average accuracy of 92% and an average F1 score of 91.5%, depending on the class comparison strategy and selected features. RF-based one vs. all binary classification model achieves sensitivity of 97.6%, precision of 91.1%, and specificity of 87.1% to discriminate CS from non-CS on the test dataset. RF-based multiclass classification model achieves average per class sensitivity of 91.8%, average per class specificity of 97.1%, and average per class precision of 92.1% to classify different subtypes of CS on the test dataset. Clinical performance evaluation suggests that the developed models can help improve physicians’ judgment in diagnosing CS.Enhancing visual quality for underexposed images is an extensively concerning task that plays an important role in various areas of multimedia and computer vision. Most existing methods often fail to generate high-quality results with appropriate luminance and abundant details. To address these issues, we develop a novel framework, integrating both knowledge from physical principles and implicit distributions from data to address underexposed image correction. More concretely, we propose a new perspective to formulate this task as an energy-inspired model with advanced hybrid priors. A propagation procedure navigated by the hybrid priors is well designed for simultaneously propagating the reflectance and illumination toward desired results. We conduct extensive experiments to verify the necessity of integrating both underlying principles (i.e., with knowledge) and distributions (i.e., from data) as navigated deep propagation. Plenty of experimental results of underexposed image correction demonstrate that our proposed method performs favorably against the state-of-the-art methods on both subjective and objective assessments. In addition, we execute the task of face detection to further verify the naturalness and practical value of underexposed image correction. What is more, we apply our method to solve single-image haze removal whose experimental results further demonstrate our superiorities.The problem of solving linear equations is considered as one of the fundamental problems commonly encountered in science and engineering. In this article, the complex-valued time-varying linear matrix equation (CVTV-LME) problem is investigated. Then, by employing a complex-valued, time-varying QR (CVTVQR) decomposition, the zeroing neural network (ZNN) method, equivalent transformations, Kronecker product, and vectorization techniques, we propose and study a CVTVQR decomposition-based linear matrix equation (CVTVQR-LME) model. In addition to the usage of the QR decomposition, the further advantage of the CVTVQR-LME model is reflected in the fact that it can handle a linear system with square or rectangular coefficient matrix in both the matrix and vector cases. Its efficacy in solving the CVTV-LME problems have been tested in a variety of numerical simulations as well as in two applications, one in robotic motion tracking and the other in angle-of-arrival localization.The tensor-tensor product-induced tensor nuclear norm (t-TNN) (Lu et al., 2020) minimization for low-tubal-rank tensor recovery attracts broad attention recently. However, minimizing the t-TNN faces some drawbacks. For example, the obtained solution could be suboptimal to the original problem due to its loose approximation. In this article, we extract a unified nonconvex surrogate of the tensor tubal rank as a tighter regularizer, which involves many popular nonconvex penalty functions. An iterative reweighted t-TNN algorithm is proposed to solve the resulting generalized nonconvex tubal rank minimization for tensor recovery. It converges to a critical point globally with rigorous proofs based on the Kurdyka-Łojasiwicz property. Furthermore, we provide the theoretical guarantees for exact and robust recovery by developing the tensor null space property. Extensive experiments demonstrate that our approach markedly enhances recovery performance compared with several state-of-the-art convex and nonconvex methods.Hybrid systems, which combine statistical and machine learning (ML) techniques using residual (error forecasting) modeling, have been highlighted in the literature due to their accuracy and ability to forecast time series with different characteristics. In these architectures, a crucial task is the proper modeling of the residuals since they may present random fluctuations, complex nonlinear patterns, and heteroscedastic behavior. Hence, the selection, specification, and training of one ML model to forecast the residuals are costly and challenging tasks since issues, such as underfitting, overfitting, and misspecification, can lead to a system with low accuracy or even deteriorate the linear forecast of the time series. This article proposes a hybrid system, named dynamic residual forecasting (DReF), that employs a modified dynamic selection (DS) algorithm to decide the most suitable ML model to forecast a pattern of the residual series and if it is a promising candidate to increase the accuracy of the time series forecast from the linear combination.

Deel via Whatsapp