-
Beatty Neville heeft een update geplaatst 1 week, 1 dag geleden
Prior radioembolization, a simulation using
Tc-macroaggregated albumin as
Y-microspheres surrogate is performed. Gamma scintigraphy images (planar, SPECT, or SPECT-CT) are acquired to evaluate intrahepatic
Y-microspheres distribution and detect possible extrahepatic and lung shunting. These images may be used for pre-treatment dosimetry evaluation to calculate the
Y activity that would get an optimal tumor response while sparing healthy tissues. Several dosimetry methods are available, but there is still no consensus on the best methodology to calculate absorbed doses. The goal of this study was to retrospectively evaluate the impact of using different dosimetry approaches on the resulting
Y-radioembolization pre-treatment absorbed dose evaluation based on
Tc-MAA images.
Absorbed doses within volumes of interest resulting from partition model (PM) and 3D voxel dosimetry methods (3D-VDM) (dose-point kernel convolution and local deposition method) were evaluated. Additionally, a new “Multi-tumorentation and evaluation of the tumors is essential. In patients with multiple tumors, the application of PM is not optimal and the 3D-VDM or the new MTPM are suggested instead. If a 3D-VDM method is not available, MTPM is the best option. Furthermore, both 3D-VDM approaches may be indistinctly used.
Significant differences among the studied dosimetry approaches for 90Y-radioembolization treatments exist. Differences do not yield a substantial impact in treatment planning for healthy tissue but they do for tumoral liver. An individual segmentation and evaluation of the tumors is essential. In patients with multiple tumors, the application of PM is not optimal and the 3D-VDM or the new MTPM are suggested instead. If a 3D-VDM method is not available, MTPM is the best option. Furthermore, both 3D-VDM approaches may be indistinctly used.
Stereotactic radiosurgery (SRS) is often the primary treatment modality for patients with intracranial metastatic disease. Despite advances in magnetic resonance imaging, including use of perfusion and diffusion sequences and molecular imaging, distinguishing radiation necrosis from progressive tumor remains a diagnostic and clinical challenge. We investigated the sensitivity and specificity of
F-fluciclovine PET to accurately distinguish radiation necrosis from recurrent intracranial metastatic disease in patients who had previously undergone SRS.
Fluciclovine PET imaging was performed in 8 patients with a total of 15 lesions that had previously undergone SRS and had subsequent MRI and clinical features suspicious for recurrent disease. The SUVmax of each lesion and the contralateral normal brain parenchyma were summated and evaluated at four different time points (5min, 10min, 30min, and 55min). Lesions were characterized as either recurrent disease (11 of 15 lesions) or radiation necrosis (4 of 15 lee PET may play an important role in distinguishing active intracranial metastatic lesions from radiation necrosis in patients previously treated with SRS but needs to be validated in larger studies.
Fluciclovine PET may play an important role in distinguishing active intracranial metastatic lesions from radiation necrosis in patients previously treated with SRS but needs to be validated in larger studies.Resident cardiac macrophages (rcMacs) are integral components of the myocardium where they have key roles for tissue homeostasis and in response to inflammation, tissue injury and remodelling. In this review, we summarize the current knowledge and limitations associated with the rcMacs studies. We describe their specific role and contribution in various processes such as electrical conduction, efferocytosis, inflammation, tissue development, remodelling and regeneration in both the healthy and the disease state. We also outline research challenges and technical complications associated with rcMac research. Recent technological developments and contemporary immunological techniques are now offering new opportunities to investigate the separate contribution of rcMac in respect to recruited monocytes and other cardiac cells. Finally, we discuss new therapeutic strategies, such as drugs or non-coding RNAs, which can influence rcMac phenotype and their response to inflammation. These novel approaches will allow for a deeper understanding of this cardiac endogenous cell type and might lead to the development of more specific and effective therapeutic strategies to boost the heart’s intrinsic reparative capacity.Pollution of heavy metals in agricultural environments is a growing problem to the health of the world’s human population. XL177A mw Green, low-cost, and efficient detection methods can help control such pollution. In this study, a protein biosensor, mApple-D6A3, was built from rice-derived Cd2+-binding protein D6A3 fused with the red fluorescent protein mApple at the N-terminus to detect the contents of heavy metals. Fluorescence intensity of mApple fused with D6A3 indicated the biosensor’s sensitivity to metal ions and its intensity was more stable under alkaline conditions. mApple-D6A3 was most sensitive to Cu2+, then Ni2+, then Cd2+. Isothermal titration calorimetry experiments demonstrated that mApple-D6A3 successfully bound to each of these three metal ions, and its ability to bind the ions was, from strongest to weakest, Cu2+ > Cd2+ > Ni2+. There were strong linear relationships between the fluorescence intensity of mApple-D6A3 and concentrations of Cd2+ (0-100 μM), Cu2+ (0-60 μM) and Ni2+ (0-120 μM), and their respective R2 values were 0.994, 0.973 and 0.973. When mApple-D6A3 was applied to detect concentrations of heavy metal ions in water (0-0.1 mM) or culture medium (0-1 mM), its accuracy for detection attained more than 80%. This study demonstrates the potential of this biosensor as a tool for detection of heavy metal ions.
Outcomes in chronic obstructive pulmonary disease (COPD) such as symptoms, hospitalisations and mortality rise with increasing disease severity. However, the heterogeneity of electronic medical records presents a significant challenge in measuring severity across geographies. We aimed to develop and validate a method to approximate COPD severity using the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011 classification scheme, which categorises patients based on forced expiratory volume in 1s, hospitalisations and the modified Medical Research Council dyspnoea scale or COPD Assessment Test.
This analysis was part of a comprehensive retrospective study, including patients sourced from the IQVIA Medical Research Data [IMRD; incorporating data from The Health Improvement Network (THIN), a Cegedim database] and the Clinical Practice Research Datalink (CPRD) in the UK, the Disease Analyzer in Germany and the Longitudinal Patient Data in Italy, France and Australia. Patients in the CPRD with the complete set of information required to calculate GOLD 2011 groups were used to develop the method.