-
McDaniel Fisker heeft een update geplaatst 2 dagen, 19 uren geleden
Salts with asymmetric (fluorosulfonyl)(trifluoromethanesulfonyl)imide (FTFSI) anions have recently been shown to suppress crystallization of water-in-salt electrolytes, enabling low-temperature operation of high-voltage aqueous rechargeable batteries. To clarify the underlying mechanism for the kinetic suppression of crystallization, we investigate the local solution structures and dynamic behaviors of water-in-salt electrolytes based on the asymmetric FTFSI anion and its symmetric anion analogues by Raman spectroscopy and molecular dynamics simulations. We find that monodentate coordination of FTFSI to cations leads to high rotational mobility of the uncoordinated SO2CF3 group. We conclude that the peculiar, coordination-dependent, local dynamics in the asymmetric FTFSI anion, manifested by enhanced intramolecular bond rotation, enables the strong supercooling behavior.Purpose The purpose of this study was to investigate the association between the choriocapillaris microcirculation and the visual function and cone photoreceptor structure in patients with diabetes. Methods Thirteen control subjects and 26 patients with type 2 diabetes were recruited. The patients with diabetes were divided into three groups based on the grade of diabetic retinopathy (DR). The retinal sensitivity (RS) was evaluated using microperimetry. Cone photoreceptor mosaics were imaged using an adaptive optics retinal camera, and the cone heterogeneity packing index (HPi) was calculated. Optical coherence tomography angiography (OCTA) images of the choriocapillaris were obtained using spectral-domain OCTA, and the area of flow deficit (FD) was evaluated. All parameters were evaluated in the foveal and parafoveal areas. Results The study included four patients with diabetes without retinopathy, 12 patients with nonproliferative diabetic retinopathy (NPDR), and 10 patients with proliferative diabetic retinopathy (PDR). The foveal and parafoveal FDs were correlated significantly (fovea, r = -0.58; P = 0.046 and r = -0.82; P = 0.003; parafovea, r = -0.59; P = 0.044 and r = -0.72; and P = 0.019, respectively) with the RS in patients with NPDR and PDR, but not in control and no diabetic retinopathy (NDR) groups. There were no differences in the foveal HPi among the groups. Conclusions Impaired choriocapillaris microcirculation is associated with impaired visual function but not cone photoreceptor integrity in eyes with DR.This study evaluated 53 primiparous cows (36.8±1.23 months old and 484±40.9 kg of body weight) performance tested (GrowSafe® System) from 22±5 to 190±13 days of lactation in order to obtain daily dry matter intake (DMI). selleck compound The animals received a high-forage diet (forage-to-concentrate ratio of 9010). Milk production of the cows was evaluated three times by mechanical milking and the energy-corrected milk yield (ECMY) was calculated. Energy status (through the indicators glucose, cholesterol, triglycerides, and β-hydroxybutyrate), protein status (indicators albumin, urea, and creatinine), mineral status (indicators calcium, phosphorus, and magnesium), and hormonal status (indicators insulin and cortisol) were estimated four times throughout lactation. The residual feed intake (RFI) of cows was calculated considering DMI, average daily gain (ADG) and mid-test metabolic weight (BW0.75) obtained in early lactation (from 22±5 to 102±7 days), and the animals were classified as negative (most efficient) or positive RFI (least efficient). The RFI model explained 53% of the variation in DMI. The mean DMI, ADG, ECMY, and calf weight as a percentage of cow weight were 12.47±2.70 kg DM/day, 0.632±0.323 kg/day, 10.47±3.23 kg/day, and 36.6±5.39%, respectively. Negative RFI cows consumed 11.5% less DM than positive RFI cows, with performance and metabolic profile being similar to those of positive RFI cows, except for a lower milk protein content and higher blood cholesterol concentration. In conclusion, negative (most efficient) and positive RFI (least efficient) Nellore cows, fed an ad libitum high-forage diet, produced similar amounts of milk, fat and lactose and had similar subcutaneous fat thickness, weight, calf weight as a percentage of cow weight, and blood metabolite concentrations (except for cholesterol). Therefore, there are economic benefits to utilizing RFI in a cow herd since cattle had decreased DMI with similar overall performance, making them more profitable due to lower input costs.Purpose Extracellular accumulation of all-trans-retinaldehyde (atRAL), a highly reactive visual cycle intermediate, is toxic to cells of the outer retina and contributes to retinal and macular degenerations. However, the contribution of atRAL to retinal capillary function has not been studied. We hypothesized that atRAL released from the outer retina can contribute to retinal vascular permeability. We, therefore, tested the contribution of atRAL to retinal ischemia-reperfusion (IR)-induced vascular permeability. Methods IR was induced in mice by transient increase in intraocular pressure followed by natural reperfusion. The visual cycle was ablated in the Lrat-/- mice, reduced by dark adaptation or the use of the RPE65 inhibitor and atRAL scavenger emixustat. Accumulation of FITC-BSA was used to assess vascular permeability and DNA fragmentation quantified cell death after IR. Primary bovine retinal endothelial cell (BREC) culture was used to measure the direct effects of atRAL on endothelial permeability and cell death. Results Inhibition of the visual cycle by Lrat-/-, dark adaptation, or with emixustat, all reduced approximately half of IR induced vascular permeability at 48 hours. An increase in BREC permeability with atRAL coincided with lactate dehydrogenase (LDH) release, a measure of cell death. Both permeability and toxicity were blocked by emixustat. Conclusions Outer retinal pathology may contribute to vascular permeability by release of atRAL, which can act directly on vascular endothelial cells to alter barrier properties and induce cell death. These studies may have implications for a variety of blinding eye diseases that include outer retinal damage and retinal vascular permeability.