Activiteit

  • Crews Kudsk heeft een update geplaatst 3 dagen, 7 uren geleden

    Results of two validation schemes are presented.Dedicated indoor radio access network (RAN, such as C-RAN with fronthaul) will be in urgent demand for 5G and beyond ((B)5G), as it becomes more difficult for outdoor base stations to serve indoor mobile/IoT terminals due to the loss issue induced by higher carrier frequency. One cost-effective and time-saving strategy for indoor (B)5G RAN is to reuse the legacy multimode fibers (MMF) deployed in buildings and premises worldwide. In this work, we introduce the concept of indoor (B)5G fronthaul over legacy MMF based on analog-to-digital-compression (ADX), termed as ADX-RoMMF. Enabled by ADX for MIMO data compression, both high radio signal fidelity and fronthaul bandwidth efficiency can be achieved, which alleviates the limitation of low MMF bandwidth-distance product and supports decent indoor coverage. Meanwhile, its digital nature is highly compatible with low-cost optical transceivers (with nonlinearity and/or imperfection) and packet-based fronthaul networking such as time-sensitive networking. Furthermore, the ultralow latency of ADX processing meets the requirement of low-delay (B)5G fronthauling. We experimentally demonstrate an ADX-RoMMF link serving 16-channel MIMO signals with NR-class bandwidth and 1024QAM, leveraging a real-time ADX prototyped on a single-chip field-programmable radio platform. Results show that this 32Gb/s CPRI-equivalent rate can be transported over MMF distance of 850m within 1024QAM EVM requirement, which is 4-fold larger than that of conventional fronthaul compression scheme. Moreover, 500ns ADX latency overhead is also verified.The sodium fluorescence lidar utilizes a 589 nm narrowband pulse laser system to measure mesopause region atomic sodium density, atmospheric temperature, and wind. However, this system is complicated and unstable. The continuous-wave (CW) sodium laser system can achieve ultra-narrow bandwidth, all-solid-state, and small compact size, as such it is extremely valuable for mobile, aircraft, and space-borne applications. In this study, we developed the first pseudo-random modulated CW (PMCW) sodium lidar by using an electro-optic modulated narrowband 589 nm CW laser with an output power of ∼1.2W. A pseudorandom M-sequence-code with a length of 127 is used to achieve altitude information by modulating laser and then decoding photon signals. Also, a biaxial structure with 9 m separation between the optical axes of the transmitter and receiver is designed to suppress the strong near-ground signals, which are crucial for improving the signal-to-noise ratio (SNR) of the PMCW lidar system. Nighttime measurements on December 2-4, 2019 show that the SNR at sodium layer peak is more than 10, corresponding to a statistical uncertainty of less than 10% in sodium density with temporal and spatial resolutions of 5 min and 1.05 km respectively. The comparison of vertical profiles of sodium density simultaneously observed by PMCW lidar and collocated pulse lidar shows good agreement.Technologies and industrials in long-distance communication, detection, and imaging applications are still in great need of higher-output-power terahertz sources. This paper proposes two kinds of microscale vacuum phototube based high-power terahertz source vacuum photomixer and terahertz integrated circuit. The principle of photomixer based on photoemission and field-assisted photoemission is demonstrated. Its capability of producing radiation power beyond 1 mW is estimated based on theoretical analysis and experimental evidence. Simulation and theoretical analysis have shown that the fundamental THz photodiode devices can operate with a space-charge limited current density of 4496 A/cm2 at 60 V, and the amplifier circuits are calculated to have a gain performance of around 10 dB. Marizomib cell line The two photoemission-based roadmaps have the potential to be developed from an emerging and interdisciplinary field to more promising future directions of THz science and technology.We theoretically study the optical properties of an ensemble of two-level atoms coupled to a one-dimensional waveguide. In our model, the atoms are randomly located in the lattice sites along the one-dimensional waveguide. The results reveal that the optical transport properties of the atomic ensemble are influenced by the lattice constant and the filling factor of the lattice sites. We also focus on the atomic mirror configuration and quantify the effect of the inhomogeneous broadening in atomic resonant transition on the scattering spectrum. Furthermore, we find that initial bunching and persistent quantum beats appear in photon-photon correlation function of the transmitted field, which are significantly changed by the filling factor of the lattice sites. With great progress to interface quantum emitters with nanophotonics, our results should be experimentally realizable in the near future.Graphene-based optoelectronic devices have recently attracted much attention for the next-generation electronic-photonic integrated circuits. However, it remains elusive whether it is feasible to create graphene-based lasers at the chip scale, hindering the realization of such a disruptive technology. In this work, we theoretically propose that Landau-quantized graphene enabled by strain-induced pseudomagnetic field can become an excellent gain medium that supports lasing action without requiring an external magnetic field. Tight-binding theory is employed for calculating electronic states in highly strained graphene while analytical and numerical analyses based on many-particle Hamiltonian allow studying detailed microscopic mechanisms of zero-field graphene Landau level laser dynamics. Our proposed laser presents unique features including a convenient, wide-range tuning of output laser frequency enabled by changing the level of strain in graphene gain media. The chip-scale graphene laser may open new possibilities for graphene-based electronic-photonic integrated circuits.We provide a correction due to an erroneous repetition rate of one of the laser systems (90 fs pulse duration) in our previously published paper [Opt. Express28, 25037 (2020)10.1364/OE.399771].

Deel via Whatsapp