Activiteit

  • Gregory Hartley heeft een update geplaatst 2 dagen, 5 uren geleden

    The facile synthesis of highly active and stable bifunctional electrocatalysts to catalyze water splitting is attractive but challenging. Herein, we report the electrodeposition of Pt-decorated Ni(OH)2/CeO2 (PNC) hybrid as an efficient and robust bifunctional electrocatalyst. The graphite-supported PNC catalyst delivers superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities over the benchmark Pt/C and RuO2, respectively. For overall water electrolysis, the PNC hybrid only requires a cell voltage of 1.45 V at 10 mA cm-2 and sustains over 85 h at 1000 mA cm-2. The remarkable HER/OER performances are attributed to the superhydrophilicity and multiple effects of PNC, in which Ni(OH)2 and CeO2 accelerate HER on Pt due to promoted water dissociation and strong electronic interaction, while the electron-pulling Ce cations facilitate the generation of high-valence Ni OER-active species. These results suggest the promising application of PNC for H2 production from water electrolysis.Metal halide perovskite light-emitting diodes (LEDs) have achieved great progress in recent years. However, bright and spectrally stable blue perovskite LED remains a significant challenge. Three-dimensional mixed-halide perovskites have potential to achieve high brightness electroluminescence, but their emission spectra are unstable as a result of halide phase separation. Here, we reveal that there is already heterogeneous distribution of halides in the as-deposited perovskite films, which can trace back to the nonuniform mixture of halides in the precursors. By simply introducing cationic surfactants to improve the homogeneity of the halides in the precursor solution, we can overcome the phase segregation issue and obtain spectrally stable single-phase blue-emitting perovskites. We demonstrate efficient blue perovskite LEDs with high brightness, e.g., luminous efficacy of 4.7, 2.9, and 0.4 lm W-1 and luminance of over 37,000, 9,300, and 1,300 cd m-2 for sky blue, blue, and deep blue with Commission Internationale de l’Eclairage (CIE) coordinates of (0.068, 0.268), (0.091, 0.165), and (0.129, 0.061), respectively, suggesting real promise of perovskites for LED applications.Carbon materials have been widely used as nanozymes in bioapplications, attributing to their intrinsic enzyme-like activities. Nitrogen (N)-doping has been explored as a promising way to improve the activity of carbon material-based nanozymes (CMNs). However, hindered by the intricate N dopants, the real active site of N-doped CMNs (N-CMNs) has been rarely investigated, which subsequently retards the further progress of high-performance N-CMNs. Here, a series of porous N-CMNs with well-controlled N dopants were synthesized, of which the intrinsic peroxidase (POD)like activity has a positive correlation with the pyridinic N content. Density functional theory calculations also reveal that pyridinic N boosts the intrinsic POD-like activity of N-CMNs. Pyridinic-N dopant can effectively promote the first H2O desorption process in comparison with the graphitic and pyrrolic N, which is the key endothermic reaction during the catalytic process. Then, utilizing the optimized nanozymes with high pyridinic N content (NP-CMNs) and superior POD-like activity, a facile total antioxidant capacity (TAC) assay was developed, holding great promise in the quality assessment of medicine tablets and antioxidant food for healthcare and healthy diet.Microneedles represent a cutting-edge and idea-inspiring technology in biomedical engineering, which have attracted increasing attention of scientific researchers and medical staffs. Over the past decades, numerous great achievements have been made. The fabrication process of microneedles has been simplified and becomes more precise, easy-to-operate, and reusable. Besides, microneedles with various features have been developed and the microneedle materials have greatly expanded. In recent years, efforts have been focused on generating smart microneedles by endowing them with intriguing functions such as adhesion ability, responsiveness, and controllable drug release. Such improvements enable the microneedles to take an important step in practical applications including household drug delivery devices, wearable biosensors, biomedical assays, cell culture, and microfluidic chip analysis. In this review, the fabrication strategies, distinctive properties, and typical applications of the smart microneedles are discussed. Recent accomplishments, remaining challenges, and future prospects are also presented.The parallel evolution of wearable electronics, artificial intelligence, and fifth-generation wireless technology has created a technological paradigm with the potential to change our lives profoundly. Despite this, addressing limitations linked to continuous, sustainable, and pervasive powering of wearable electronics remains a bottleneck to overcome in order to maximize the exponential benefit that these technologies can bring once synergized. A recent groundbreaking discovery has demonstrated that by using the coupling effect of contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) can efficiently convert irregular and low-frequency passive biomechanical energy from body movements into electrical energy, providing an infinite and sustainable power source for wearable electronics. A number of human motions have been exploited to properly and efficiently harness this energy potential, including human ambulation. Shoes are an indispensable component of daily wearing and can be leveraged as an excellent platform to exploit such kinetic energy. In this article, the latest representative achievements of TENG-based smart electricity-generating shoes are comprehensively reviewed. Ki16198 We summarize ways in which not only can biomechanical energy be scavenged via ambulatory motion, but also biomonitoring of health parameters via tracking of rhythm and strength of pace can be implemented to aid in theranostic fields. This work provides a systematical review of the rational structural design, practical applications, scenario analysis, and performance evaluation of TENG-based smart shoes for wearable electricity generation. In addition, the perspective for future development of smart electricity-generation shoes as a sustainable and pervasive energy solution towards the upcoming era of the Internet of Things is discussed.

Deel via Whatsapp