-
Christophersen Choi heeft een update geplaatst 12 uren, 53 minuten geleden
Azo molecules are one of the fascinating organic molecular architectures with azo bond (-N=N-). Since the last century, the bright colored azo molecules are used as dyes for printing, food, paper, cosmetic laser, electronics, optics, material sciences etc. After the discovery of Prontosil as an antibacterial drug, azo molecules became into limelight in medicinal chemistry. Later a number of azo molecules such as Phenazopyridine, Basalazide, Sulfasalazine etc., occupied the drug market. Many azo molecules have been demonstrated as antibacterial, anti-malarial, antifungal, antioxidant, antiviral agents and many more. Metabolic degradation of many azo dyes can cause problem to liver that limits the application of azo dyes in medicinal chemistry. Azo dyes are significantly used in cancer chemotherapy. Recently, a paradigm shift has been observed in the application of azo dyes from medicinal chemistry to biomedical science area. The application of azo molecules in biomedical science such as imaging, drug deliver, photo pharmacology and photo switch areas are reported. In this article, we have complied and discussed the recent work done on azo dye molecules for medicinal importance and future prospects.Phosphorylation is arguably the most important post-translational modification that occurs within proteins. Phosphorylation is used as a signal to control numerous physiological activities ranging from gene expression to metabo-lism. Identifying phosphorylation sites within proteins was historically a challenge as it required either radioisotope label-ing or the use of phospho-specific antibodies. The advent of mass spectrometry (MS) has had a major impact on the abil-ity to qualitatively and quantitatively characterize phosphorylated proteins. In this article we describe MS methods for characterizing phosphorylation sites within individual proteins as well as entire proteome samples. The utility of these methods is illustrated in examples that show the information that can be gained using these MS techniques.
Diabetes mellitus (DM) represents a global health problem characterized by hyperglycemia due to insufficient insulin secretion or failure of insulin activity. There is an imperative need for the discovery of alternative therapeutic agents that overcome the drawbacks of the current synthetic antidiabetic drugs.
This review critically summarizes the reports on the known and novel natural compounds including alkaloids, flavonoids, and saponins with a potent antidiabetic activity that were recently published from 2014 to 2019. We discussed the underlying mechanisms of action that put these compounds in the category of effective antidiabetic candidates.
Information was obtained from Google Scholar, Scirus, PubMed, and Science Direct.
The reported natural compounds showed promising antidiabetic activity through different mechanisms such as the inhibition of α-amylase, α-glucosidase, insulin-sensitizing effect, direct action on protein tyrosine phosphatase 1B (PTP1B), peroxisome proliferator-activated recept enzyme. Some compounds inhibited the formation of advanced glycation end products (AGEs). Other compounds prevented the risk of diabetic complications such as cardiovascular diseases, retinopathy, and nephropathy. This review provides a critical overview of the most recent discoveries of antidiabetic agents from natural sources. This overview could help researchers to focus on the most prominent candidates aiming to develop new drug leads.Obesity is a major health concern for a growing fraction of the population, with the prevalence of obesity and its related metabolic disorders not being fully understood. Over the last decade, many attempts have been undertaken to understand the mechanisms at the basis of this condition, in which the accumulation of fat occurring in adipose tissue, leads to the pathogenesis of obesity related disorders. Among the most recent studies, those on Peroxisome Proliferator Activated Receptors (PPARs) revealed that these nuclear receptor proteins acting as transcription factors, among others, regulate the expression of genes involved in energy, lipid, and glucose metabolisms, and chronic inflammation. The three different isotypes of PPARs, with different tissue expression and ligand binding specificity, exert similar or overlapping functions directly or indirectly linked to obesity. Selleck N-Ethylmaleimide In this study, we reviewed the available scientific reports concerning the PPARs structure and functions, especially in obesity, considering both natural and synthetic ligands and their role in the therapy of obesity and obesity-associated disorders. In the whole, the collected data show that there are both natural and synthetic compounds that show beneficial promising activity as PPAR agonists in chronic diseases related to obesity.
Plantaricin IIA-1A5 is a bacteriocin produced by Lactobacillus plantarum IIA-1A5, a locally isolat-ed probiotic from Indonesia. Plantaricin IIA-1A5 exhibits antibacterial activity against wide spectrum of pathogenic bacte-ria, thus promising to be applied in various food products. Nevertheless, thermal stability of this bacteriocin remains to be fully investigated.
This study aims to determine thermal stability of plantaricin IIA-1A5 through kinetic and thermodynamic param-eters.
To address, plantaricin IIA-1A5 was purified from Lactobacillus plantarum IIA-1A5, which was growth under whey media, using ammonium sulfate precipitation followed by ion-exchange chromatography. Purified plantaricin IIA-IA5 was then subjected to analysis of its bacteriocin activity. The thermal inactivation of bacteriocin from L. plantarum IIA-1A5 was calculated by incubating the bacteriocin at different temperatures ranging from 60-80 °C for 30 to 90 min, which was then used to calculate its kinetic and thermodynamic parameteheat treatments are applied. Furthermore, a possible mechanism by which plantaricin IIA-1A5 maintains its stability was also discussed by referring to its thermodynamic parameters.Cytoreductive protocols are integral both as conditioning regimens for bone marrow (BM) transplantation and as part of therapies for malignancies, but their associated comorbidities represent a long-standing clinical problem. In particular, they cause myeloablation that debilitates the physiological role of mesenchymal stem and precursor cells (MSPCs) in sustaining hematopoiesis. This review addresses the damaging impact of cytoreductive regimens on MSPCs. In addition, it discusses prospects for alleviating the resulting iatrogenic comorbidities. New insights into the structural and functional dynamics of hematopoietic stem cell (HSC) niches reveal the existence of “empty” niches and the ability of the donor-derived healthy HSCs to outcompete the defective HSCs in occupying these niches. These findings support the notion that conditioning regimens, conventionally used to ablate the recipient hematopoiesis to create space for engraftment of the donor-derived HSCs, may not be a necessity for allogeneic BM transplantation.