-
Smedegaard Winkler heeft een update geplaatst 1 week, 1 dag geleden
This “psychomolecular gaze” overlooks and disregards the fact that psychotropic agents usually are highly hydrophobic and amphipathic/amphiphilic agents that, in addition to their interaction with membrane-bound proteins in the form of e.g. receptors or transporters, also interact strongly with the lipid component of cellular membranes. Here we suggest to develop a program of systematic, whole-cell level based, investigation into the role of these physical-chemical cellular membrane interactions in the therapeutic action of known psychotherapeutics. This complementary yet conceptually different approach, in our opinion, will complement drug development in psychopharmacology and thereby assist in overcoming the current crisis. In this way the “old” physical theory of drug action, which antedates the current, primary molecular, paradigm may offer “new” options for lead discovery in psychopharmacological research.
Panacis majoris Rhizoma, which is a member of herbal medicine, is known for many years to remove blood stasis, promote blood circulation, and enrich the blood. The active ingredients of this plant are mainly attributed to saponins.
The total saponins from Panacis majoris Rhizoma (TSPJ), and the degradation products of TSPJ (DTSPJ), were designed in this study to compare the protective effects on myocardial ischemia-reperfusion injury, and the aim of this approach is to discover more effective agents for the treatment of ischemic heart diseases. selleck We analyzed the main constituents of TSPJ and DTSPJ, aiming to make clear which saponins played important roles in this protective effect, and also investigated the possible mechanisms.
DTSPJ was prepared by the method of alkaline hydrolysis. High performance liquid chromatography (HPLC) were used to analyze the main chemical constituents of TSPJ and DTSPJ, which were isolated by chromatographic techniques and identified by comparison with the Nuclear Magnetic Rehemia-reperfusion injury. The underlying mechanisms may be closely related to its enhancing anti-oxidative properties, modifying blood viscosity, and inhibiting platelet aggregation and platelet adhesion. As a whole, the protection of DTSPJ against myocardial ischemia-reperfusion injury was a little stronger than those of TSPJ. The results display the prospect of DTSPJ as a drug candidate for treating ischemic heart disease.
Both TSPJ and DTSPJ can guard cardiomyocytes against myocardial ischemia-reperfusion injury. The underlying mechanisms may be closely related to its enhancing anti-oxidative properties, modifying blood viscosity, and inhibiting platelet aggregation and platelet adhesion. As a whole, the protection of DTSPJ against myocardial ischemia-reperfusion injury was a little stronger than those of TSPJ. The results display the prospect of DTSPJ as a drug candidate for treating ischemic heart disease.
Tumor-associated antigens are a promising target of immunotherapy approaches for cancer treatments but rely on sufficient expression of the target antigen. This study investigates the expression of the carcinoembryonic antigen (CEA) on the surface of irradiated lung cancer cells in vitro using gold nanoparticles as radio-enhancer.
Human lung carcinoma cells A549 were irradiated and expression of CEA on the cell surface measured by flow cytometry 3h, 24h, and 72h after irradiation to doses of 2Gy, 6Gy, 10Gy, and 20Gy in the presence or absence of 0.1mg/ml or 0.5mg/ml gold nanoparticles. CEA expression was measured as median fluorescent intensity and percentage of CEA-positive cells.
An increase in CEA expression was observed with both increasing radiation dose and time. There was doubling in median fluorescent intensity 24h after 20Gy irradiation and 72h after 6Gy irradiation. Use of gold nanoparticles resulted in additional significant increase in CEA expression. Change in cell morphology included swelling of cells and increased internal complexity in accordance with change in CEA expression.
This study showed an increase in CEA expression on human lung carcinoma cells following irradiation. Increase in expression was observed with increasing radiation dose and in a time dependent manner up to 72h post irradiation. The results further showed that gold nanoparticles can significantly increase CEA expression following radiotherapy.
This study showed an increase in CEA expression on human lung carcinoma cells following irradiation. Increase in expression was observed with increasing radiation dose and in a time dependent manner up to 72 h post irradiation. The results further showed that gold nanoparticles can significantly increase CEA expression following radiotherapy.Large area electron microscopy (EM) imaging has long been difficult due to fundamental limits in throughput for conventional electron microscopes. New developments in transmission electron microscopy and multi-beam scanning electron microscopy (MBSEM) imaging have however made it possible to generate large EM datasets [1,2,3]. This article describes a transmission imaging technique that is suitable for a MBSEM as it allows for a relatively straightforward way of separating the signals generated by each beam. The technique places a thin (50nm-200nm) tissue section directly on top of a coated scintillator. The electrons that are transmitted through the section generate light in the scintillator which is collected by a high NA objective and imaged onto a photon detector. This article gives a model for the contrast-to-noise (CNR) and signal-to-noise (SNR) ratio that is to be expected for this imaging technique. These parameters were calculated using Monte-Carlo simulations. It was found that the CNR increases when decreasing landing energy and SNR increases with increasing landing energy. These two trends cause that there is an intermediate energy where imaging performance is best. The energy of this optimum was calculated for various levels of heavy metal staining, section thickness, coating material, coating thickness and light collection efficiency. The model was verified experimentally on a synthetic sample.Atom probe tomography (APT) allows measurement of the three-dimensional structure and composition of materials, but specific sample preparation procedures are required for challenging materials such as aggregates of nanoparticles. Indeed, the presence of porosity within the specimen affects both the stability of the sample and the accuracy of the data. Here, aggregates of nanoparticles were transferred onto a micromanipulator tip and embedded via electron-beam-assisted deposition of Pt. Successive FIB-millings and Pt-depositions are needed to create suitable APT tips. The 3D reconstruction reveals the presence of 15-20 nm nanoparticles, and mass-spectral analysis shows the absence of trace elements within the catalyst, thus serving as quality control for the synthesis of nanoparticles with specific compositions.