Activiteit

  • Paulsen Obrien heeft een update geplaatst 1 week, 3 dagen geleden

    Follow-up studies are warranted to evaluate the long-term accuracy of multiple-day Holter analysis in predicting the development of DCM in DP dogs. Effective and economically viable method to remove elevated metal(loid)s from farm and industrial lands remains a major challenge. In this study, magnetic biochar-based adsorbents with Fe3O4 particles embedded in a porous biochar matrix was synthesized via iron (Fe) treated biochar or thermal pyrolysis of Fe treated cedar sawdust. Application and separation of the adsorbent to a multi-contaminated soil slurry simultaneously removed 20-30% of arsenic, cadmium and lead within 24 h. Fast removal of multi-metal(loid)s result from the decrease in all operationally defined fractions of metal(loid)s, not limited to the exchangeable fraction. The direct removal of arsenic-enriched soil particles was observed via micro X-ray fluorescence maps. Furthermore, through comparison of biochars with different production methods, it has been found that magnetization after pyrolysis treatment leads to stronger metals/metalloids adsorption with a higher qe (bound sorbate) than other treatments but pyrolysis after magnetization stabilized Fe oxides on the biochar surface, indicating a higher biochar recovery rate (∼65%), and thus a higher metal(loid)s removal efficiency. The stability of Fe oxides on the surface of biochar is the determining factor for the removal efficiency of metal(loid)s from soil. Despite the application of girdling technique for several centuries, its impact on the metabolic shifts that underly fruit biology remains fragmentary. To characterize the influence of girdling on sweet cherry (Prunus avium L.) fruit development and ripening, second-year-old shoots of the cultivars ‘Lapins’ and ‘Skeena’ were girdled before full blossom. Fruit characteristics were evaluated across six developmental stages (S), from green-small fruit (stage S1) to full ripe stage (stage S6). Sorafenib D3 in vivo In both cultivars, girdling significantly altered the fruit ripening physiognomy. Time course fruit metabolomic along with proteomic approaches unraveled common and cultivar-specific responses to girdling. Notably, several primary and secondary metabolites, such as soluble sugars (glucose, trehalose), alcohol (mannitol), phenolic compounds (rutin, naringenin-7-O-glucoside), including anthocyanins (cyanidin-3-O-rutinoside, cyanidin-3-O-galactoside, cyanidin-3.5-O-diglucoside) were accumulated by girdling, while various amino acids (glycine, threonine, asparagine) were decreased in both cultivars. Proteins predominantly associated with ribosome, DNA repair and recombination, chromosome, membrane trafficking, RNA transport, oxidative phosphorylation, and redox homeostasis were depressed in fruits of both girdled cultivars. This study provides the first system-wide datasets concerning metabolomic and proteomic changes in girdled fruits, which reveal that shoot girdling may induce long-term changes in sweet cherry metabolism. Understanding the influence of the valuable “low-phytate” trait on soybean seedling growth, physiology, and biochemistry will facilitate its future exploitation. The aim was to elucidate the physiological and biochemical characteristics of low-phytate (LP) soybean at the seedling stage. To this end, seed P and mineral content and seedling dry weight, carbon (C) and nitrogen (N) accumulation, nitrogen fixation, and root and nodule phytase and phosphatase activity levels were measured at 21 d after sowing LP and normal-phytate (NP) soybean lines. Seedling dry weight, and C and N accumulation were 31%, 38% and 54% higher, respectively, in the LP line than the NP line. The total and specific nitrogen fixation levels in the LP nodules were 46% and 78% higher, respectively, than those in the NP nodules. The phytase, phosphatase, and specific phytase levels were 1.4-folds, 1.3-folds, and 1.3-folds higher, respectively, in the LP roots than the NP roots. The phosphatase and specific phosphatase levels in LP nodules were 1.5-folds and 1.3-folds higher, respectively, than those in the NP nodules. The mineral levels were substantially higher in the LP seeds and seedings than in those of the NP line. The HCl extractabilities of P, S, Fe, Cu and Mn were higher in the LP seeds than the NP seeds. These results indicate that the LP line presented with superior seedling growth and nitrogen fixation relative to the NP line. The LP line had relatively higher root phytase and root and nodule phosphatase activity levels than the NP line and could, therefore, be better suited and more readily adapt to low P conditions. Valve restenosis after percutaneous balloon pulmonary valvuloplasty (BPV) for the treatment of congenital pulmonic stenosis (PS) may occur in up to 17% of canine cases. Outcomes in dogs with PS that are treated with repeat BPV after restenosis have not been described. The present report details the clinical courses of four dogs with congenital PS, previously treated with conventional BPV and atenolol (n = 4) or atenolol alone (n = 1), two with anomalous, circumpulmonary coronary artery anatomy, which underwent BPV followed immediately by external beam radiation therapy (BPV + EBRT) to prevent valve restenosis. External beam radiation therapy involved five daily fractions of 3.6 Gray to the pulmonic valve. Echocardiographic and clinical follow-up information for 2-4 years after BPV + EBRT is presented. Three dogs experienced long-term reduction in transpulmonic pressure gradient. In one dog, which was treated with conservative BPV + EBRT as first-line therapy, return of transpulmonic pressure gradient to pretreatment levels was noted by 7 months after BPV + EBRT. Although clinical benefit remains unproven, the addition of EBRT to conventional BPV may be a treatment option for dogs experiencing restenosis after BPV or those in which restenosis is considered likely. Further study to evaluate the efficacy and safety of this approach is needed. Anticancer drug discovery and development using conventional cell line and animal models has traditionally had a low overall success rate. Despite yielding game-changing new therapeutics, 10-20 new molecules have to be brought to the clinic to obtain one new approval, making this approach costly and inefficient. The use of in vitro experimental models based on primary human tumour tissues has the potential to provide a representation of human cancer biology that is closer to an actual patient and to ‘bridge the translational gap’ between preclinical and clinical research. Here, we review recent advances in the use of human tumour samples for preclinical research through organoid development or as primary patient materials. While challenges still remain regarding analysis, validation and scalability, evidence is mounting for the applicability of both models as preclinical research tools.

Deel via Whatsapp