Activiteit

  • Hovmand Stensgaard heeft een update geplaatst 1 week, 5 dagen geleden

    This could account for the dysregulation of intracellular ROS homeostasis during decidualization and decreased expression of decidual markers. Collectively, our findings provided insight into the role of down-regulated SIRT1 in the poor decidual response of ESCs in RIF patients.Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.[This corrects the article DOI 10.3389/fcell.2020.576988.].Essential hypertension (EH) is one of the most common cardiovascular diseases worldwide, entailing a high level of morbidity. EH is a multifactorial disease influenced by both genetic and environmental factors, including mitochondrial DNA (mtDNA) genotype. Previous studies identified mtDNA mutations that are associated with maternally inherited hypertension, including tRNAIle m.4263A>G, m.4291T>C, m.4295A>G, tRNAMet m.4435A>G, tRNAAla m.5655A>G, and tRNAMet/tRNAGln m.4401A>G, et al. These mtDNA mutations alter tRNA structure, thereby leading to metabolic disorders. Metabolic defects associated with mitochondrial tRNAs affect protein synthesis, cause oxidative phosphorylation defects, reduced ATP synthesis, and increase production of reactive oxygen species. In this review we discuss known mutations of tRNA genes encoded by mtDNA and the potential mechanisms by which these mutations may contribute to hypertension.Gut bacterial dysbiosis plays a vital role in the development of Alzheimer’s disease (AD). However, our understanding of alterations to the gut fungal microbiota and their correlations with host immunity in AD is still limited. Samples were obtained from 88 Chinese patients with AD, and 65 age- and gender-matched, cognitively normal controls. Using these samples, we investigated the fungal microbiota targeting internal transcribed spacer 2 (ITS2) rRNA genes using MiSeq sequencing, and analyzed their associations with the host immune response. Our data demonstrated unaltered fungal diversity but altered taxonomic composition of the fecal fungal microbiota in the AD patients. The analysis of the fungal microbiota was performed using 6,585,557 high-quality reads (2,932,482 reads from the controls and 3,653,075 from the AD patients), with an average of 43,042 reads per sample. We found that several key differential fungi such as Candida tropicalis and Schizophyllum commune were enriched in the AD patients, while Rhodotorula mucilaginosa decreased significantly. Interestingly, C. tropicalis and S. commune were positively correlated with IP-10 and TNF-α levels. In contrast, C. tropicalis was negatively correlated with IL-8 and IFN-γ levels, and R. mucilaginosa was negatively correlated with TNF-α level. PiCRUSt analysis revealed that lipoic acid metabolism, starch and sucrose metabolism were significantly decreased in the AD fungal microbiota. Ruxolitinib This study is the first to demonstrate fecal fungal dysbiosis in stable AD patients at a deeper level, and to identify the key differential fungi involved in regulating host systemic immunity. The analysis of the fungal microbiota in AD performed here may provide novel insights into the etiopathogenesis of AD and pave the way for improved diagnosis and treatment of AD.Cardiac energy homeostasis is strictly controlled by the mitochondrial complex-mediated respiration. In the heart, mitochondrial complex I is highly susceptible to functional and structural destroy after ischemia/reperfusion (I/R), thereby contributing to myocardial energy insufficiency and cardiomyocyte death. Fas-activated serine/threonine kinase (FASTK) is recently recognized as a key modulator of mitochondrial gene expression and respiration. However, the role of FASTK in cardiac I/R process is undetermined. Here, we show that FASTK expression was down-regulated in the post-I/R heart. The reactive oxygen species scavenger N-acetyl-L-cysteine reversed I/R-induced FASTK down-regulation. Genetic deletion of FASTK exacerbated I/R-induced cardiac dysfunction, enlarged myocardial infarct size, and increased cardiomyocyte apoptosis. Compared with the wild type control, the FASTK deficient heart exhibited a lower mRNA expression of NADH dehydrogenase subunit-6 (MTND6, a mitochondrial gene encoding a subunit of complex I) and was more vulnerable to I/R-associated complex I inactivation. Replenishment of FASTK expression via adenovirus-mediated gene delivery restored mitochondrial complex I activity and ameliorated cardiomyocyte death induced by I/R, whereas these beneficial effects were blocked by the co-treatment with rotenone, a specific complex I inhibitor. in vivo experiments further confirmed that cardiac overexpression of FASTK ameliorated I/R-related MTND6 down-regulation and mitochondrial complex I inactivation, thereby protecting the heart against I/R injury. Collectively, these data for the first time identify that the down-regulation of FASTK is a direct culprit behind the loss of mitochondrial complex I functional integrity and cardiac injury induced by I/R process. Targeting FASTK might be a promising and effective strategy for MI/R intervention.

Deel via Whatsapp