-
Kusk Mcneil heeft een update geplaatst 5 dagen, 10 uren geleden
Foraging by animals is hypothesized to be state-dependent, that is, varying with physiological condition of individuals. State often is defined by energy reserves, but state also can reflect differences in nutritional requirements (e.g., for reproduction, lactation, growth, etc.). Testing hypotheses about state-dependent foraging in ungulates is difficult because fine-scale data needed to evaluate these hypotheses generally are lacking. To evaluate whether foraging by caribou (Rangifer tarandus) was state-dependent, we compared bite and intake rates, travel rates, dietary quality, forage selection, daily foraging time, and foraging strategies of caribou with three levels of nutritional requirements (lactating adults, nonlactating adults, subadults 1-2 years old). https://www.selleckchem.com/products/benzamil-hydrochloride.html Only daily foraging times and daily nutrient intakes differed among nutritional classes of caribou. Lactating caribou foraged longer per day than nonlactating caribou-a difference that was greatest at the highest rates of intake, but which persisted even when intake was below requirements. Further, at sites where caribou achieved high rates of intake, caribou in each nutritional class continued foraging even after satisfying daily nutritional requirements, which was consistent with a foraging strategy to maximize energy intake. Foraging time by caribou was partially state-dependent, highlighting the importance of accounting for physiological state in studies of animal behavior. Fine-scale foraging behaviors may influence larger-scale behavioral strategies, with potential implications for conservation and management.Knowledge as to the taxonomic status of enigmatic bat species often is hindered by limited availability of specimens. This is particularly true for aerial-hawking bats that are difficult to catch. One such species, “Hypsugo” joffrei, was originally described in Nyctalus due to its long and slender wings, but subsequently transferred to Pipistrellus, and most recently to Hypsugo, on the basis of morphology. Analysis of newly available material, which more than doubles the known specimens of this taxon, demonstrates that it is morphologically and genetically distinct from all other bat genera. We accordingly describe it as belonging to a new, monotypic genus. We provide a detailed description of its external and craniodental traits, measurements, and assessment of genetic relationships, including barcode sequences to facilitate its rapid identification in future. The new genus belongs to a group that includes the recently described Cassistrellus, as well as Tylonycteris, and its closest relative, Philetor. We also describe the echolocation calls emitted by members of the taxon in different situations, which may facilitate finding them in previously unsampled locations. Based on the new data, the species occurs from Nepal to North Vietnam and China, which suggests that it could be more widespread than previously thought.The Japan Aerospace Exploration Agency’s (JAXA) Kaguya spacecraft carried a suite of instruments to map the Moon and its environment globally. During its extended mission, the average altitude was 50 km or lower, and Kaguya science products using these data hence have an increased spatial resolution. However, the geodetic position quality of these products is much worse than that of those acquired during the primary mission (at an altitude of 100 km) because of reduced radiometric tracking and frequent thrusting to maintain spacecraft attitude after the loss of momentum wheels. We have analyzed the Kaguya tracking data using gravity models based on the Gravity Recovery and Interior Laboratory (GRAIL) mission, and by making use of a new data type based on laser altimeter data collected by Kaguya we adjust the spacecraft orbit such that the altimetry tracks fit a precise topographic basemap based on the Lunar Reconnaissance Orbiter’s (LRO) Lunar Orbiter Laser Altimeter (LOLA) data. This results in geodetically accurate orbits tied to the precise LOLA/LRO frame. Whereas previously archived orbits show errors at the level of several a level of several tens of meters. When altimetry data are not available, the combination of GRAIL gravity and radio tracking results in an orbit precision of around several hundreds of meters for the low-altitude phase of the extended mission. Our greatly improved orbits result in better geolocation of the Kaguya extended mission data set.Surface ice at the poles of Mercury appears as several-m-thick deposits that are composed of nearly pure water. We provide new age estimates of Mercury’s polar deposits from combined analyses of Poisson statistics and direct observations of crater densities within permanently shadowed, radar-bright regions imaged by the MESSENGER spacecraft. These age estimates suggest that ice was delivered to Mercury within the last ~150 Myr. A single, recent impactor is one possible delivery mechanism that is consistent with our new age constraints, as well as the observed distinct reflectance boundaries of the polar deposits and the relative purity of the ice, as suggested by the Earth-based radar observations. In contrast to ice on Mercury, observations of the lunar poles are suggestive of a highly patchy distribution of surface frost. The patchiness of lunar polar deposits is consistent with long exposure times to the space weathering environment. Given enough time, the polar deposits on Mercury may age into a more heterogeneous spatial distribution, similar to that on the Moon.Respondent-driven sampling is an approach for estimating features of populations that are difficult to access using standard survey tools, e.g., the fraction of injection drug users who are HIV positive. Baraff et al. (2016) introduced an approach to estimating uncertainty in population proportion estimates from respondent-driven sampling using the tree bootstrap method. In this paper we establish the consistency of this tree bootstrap approach in the case of [Formula see text]-trees.We consider scenarios in which the likelihood function for a semiparametric regression model factors into separate components, with an efficient estimator of the regression parameter available for each component. An optimal weighted combination of the component estimators, named an ensemble estimator, may be employed as an overall estimate of the regression parameter, and may be fully efficient under uncorrelatedness conditions. This approach is useful when the full likelihood function may be difficult to maximize, but the components are easy to maximize. It covers settings where the nuisance parameter may be estimated at different rates in the component likelihoods. As a motivating example we consider proportional hazards regression with prospective doubly censored data, in which the likelihood factors into a current status data likelihood and a left-truncated right-censored data likelihood. Variable selection is important in such regression modelling, but the applicability of existing techniques is unclear in the ensemble approach.